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Abstract 
 As 21st-century climate and fire activity depart from historical baselines, effects on 
forests are uncertain. Forest managers need to predict and monitor forest recovery and fuel 
accumulation to anticipate future fire behavior and plan appropriate management activities. We 
explored how interactions between climate and fire affected post-fire recovery of subalpine 
forests, which were historically resilient to infrequent (100-300 year) severe fire, in Greater 
Yellowstone (Northern Rocky Mountains, United States). We sampled paired short- (< 30 year) 
and long- (> 125 year) interval post-fire plots last burned between 1988 and 2018 to address two 
questions: (1) How do short-interval fire, climate, and other factors (topography, distance to live 
edge) interact to affect post-fire forest recovery? (2) How do forest biomass and fuels vary 
following short- versus long-interval severe fires? Additionally, a low-cost unpersonned aerial 
system (i.e., drone) was flown in a subset of post-fire plots to assess: (3) How do different 
methods of drone data collection affect derived measurements of forest structure and detection of 
standing dead snags? Mean post-fire stem density was an order of magnitude lower following 
short- versus long-interval fires (3,240 versus 28,741 stems ha-1, respectively). Differences 
between paired plots increased with greater climate water deficit normal (𝜌 = 0.67) and were 
amplified at longer distances to live forest edge. Unlike conifers, density of aspen (Populus 
tremuloides), a deciduous resprouter, increased with short- versus long-interval fire (mean 384 
versus 62 stems ha-1, respectively). Live biomass and canopy fuels remained low nearly 30 years 
after short-interval fire, in contrast to rapid recovery after long-interval fire, suggesting that 
future burn severity may be reduced for several decades following reburns. Short-interval plots 
also had half as much dead woody biomass compared to long-interval plots (60 versus 121 Mg 
ha-1), primarily due to the absence of large snags. Measurements derived from drone imagery 
underestimated tree density in young, dense, post-fire plots but characterized snag and tree 
height well. The conventional built-in red, green, and blue light sensor outperformed a separate 
sensor that detected near-infrared reflectance, and ground control points did not improve output 
accuracy. Overall, our results suggest that a trifecta of short-interval fire, large patch size, and 
arid post-fire climate could threaten subalpine forest resilience but also reduce future burn 
severity. These findings could help forest managers prioritize opportunities for management 
activities or identify areas where forest transitions may be most likely. Identifying reburn 
locations may be valuable for planning fire suppression activities or identifying potential 
firefighter access or escape routes. Low cost and standardized approaches make drones a 
promising technology for collecting forest inventory data. 
 

Objectives 
 This project used a field data campaign in 16 reburns where recent fire burned subalpine, 
lodgepole pine forests at both short- (< 30 year, "reburns") and long- (> 125 year) fire return 
intervals in the Greater Yellowstone Ecosystem (GYE) to address three Joint Fire Science 
Program task statements: changing fire environment, fire effects and post-fire recovery, and fuels 
management and fire behavior. Forest recovery and fuels were measured in paired short- and 
long-interval post-fire plots and supplemented with previously collected data (n = 33 plot pairs, n 
= 66 total plots) to answer two unresolved questions: (1) How do short-interval fire, climate, and 
other factors (topography, distance to live edge) interact to affect post-fire forest recovery? (2) 
How do forest biomass and fuels vary following short- versus long-interval severe fires? We 
expected post-fire tree stem densities to be lower in reburns, drier post-fire climate to amplify 
differences between paired plots, and warmer-drier topographic conditions and greater distance 
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to live forest edge to decrease post-fire stem density. After short-interval fire, we hypothesized 
lower loads and delayed recovery of live and dead biomass and fuels. Additionally, a low-cost 
unpersonned aerial system (UAS) was flown in a subset of post-fire plots to test the viability of 
using this technology for rapid forest assessment and to collect imagery for science 
communication. This objective originally focused on comparing different methods of post-
processing UAS data (e.g., comparing object-based image identification with regression models) 
for measuring forest structure in young, often dense, post-fire forests. We modified this objective 
to instead compare different data collection methods and apply standardized post-processing 
steps for question (3), How do different methods of UAS data collection affect derived 
measurements of forest structure and detection of standing dead snags? We made this change for 
a few reasons: due to restrictions on where we were allowed to fly (i.e., not within the National 
Parks), we were only able to collect data for three plots, limiting our ability to make robust 
statistical comparisons among approaches; there are now well-documented, standardized 
approaches for processing UAS imagery and 3D point clouds; and we therefore felt that focusing 
on data collection would be more relevant to forest managers. 
 

Background 
 Fires are burning more forested area across the western United States (US) as the climate 
becomes warmer and drier (Higuera and Abatzoglou 2021). Forests are often resilient, meaning 
they can absorb disturbance without shifting to a qualitatively different structural or functional 
state (Holling 1973), under historical patterns of fire activity and when favorable climate enables 
forest recovery (Johnstone et al. 2016). Fire-adapted traits of tree species (e.g., thick bark, 
serotinous seed banks, resprouting, and long-distance dispersal; Baker 2009; Pausas and Keeley 
2014), together with residual post-fire structures such as dead wood and nearby live seed 
sources, confer resilience and enable forests to persist or recolonize burned areas (Franklin et al. 
2000). However, these disturbance legacies may be lost or diminished under expected changes in 
fire and climate. For example, more frequent fires may recur before a forest can replenish its 
former carbon stocks or reach reproductive maturity (Keeley et al. 1999, Turner et al. 2019), 
larger fires may impair regeneration by increasing distances to seed sources (Harvey et al. 
2016a), and more severe fires may facilitate changing post-fire tree species composition by 
altering soil seedbeds (Johnstone et al. 2010). Tree seedlings are particularly vulnerable to 
climate change because they tolerate a narrow range of temperature and moisture stress (Jackson 
et al. 2009, Dobrowski et al. 2015, Hansen and Turner 2019). Simultaneous changes in fire and 
climate may therefore have amplifying negative effects on post-fire forest recovery. 
 
 Projections of future fire often incorporate only climate drivers, but post-fire forest and 
fuels recovery also affect subsequent fire behavior. In many western US forest landscapes, 
increasing fire frequency is expected to regulate future fire by decreasing fuel loads, thereby 
reducing fire spread rates and burn severity (Parks et al. 2014, 2015, Stevens-Rumann et al. 
2016, Prichard et al. 2017). These negative feedbacks could counteract the influence of climate 
on fire at landscape scales (Coop et al. 2020), but may not limit regional climate-driven increases 
in burning (Abatzoglou et al. 2021). Further, self-regulation after a single severe fire is short-
lived in many forest types. For example, lodgepole pine (Pinus contorta var. latifolia) forests 
recover fuels rapidly after fire and can burn at similar or higher severity as mature forests within 
10-12 years (Harvey et al. 2016b, Nelson et al. 2016, 2017, Braziunas et al. 2022). As climate 
warms and burned area increases, forest managers need to predict and monitor forest recovery 
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and fuel accumulation following both short- and long-interval fires to anticipate future fire 
behavior and plan appropriate management activities. 
 
 Critical gaps between fine-scale insights from field studies and coarse-scale trends 
derived from remotely sensed satellite data make it difficult to quantify mechanisms of forest 
change over large extents. Low-cost spectral imagery captured by a UAS can bridge the gap 
between traditional field-based methods and remote sensing platforms by providing high spatial 
resolution (1 cm or less) optical data and covering spatial extents up to several square kilometers 
(Senf 2022, Coops et al. 2022). However, researchers must still address knowledge gaps in our 
understanding of capabilities and limitations of imagery data processing techniques (Digital 
Aerial Photogrammetry, or DAP) and data collected with UAS (Manfreda et al. 2018). UAS 
DAP can provide forest managers and researchers with an efficient, cost-effective, and accurate 
approach for monitoring forests in a future with more fire. UAS may be particularly useful for 
rapid data collection in areas that are difficult to access. 
 
 Short-interval fires (i.e., reburns) are occurring more often, yet understanding of forest 
and fuels recovery following reburns under a wide range of post-fire climate conditions remains 
unresolved. In the US Northern Rocky Mountains, 138,061 ha of forest burned twice within a 
26-year period (1984-2010), with over one-third of reburns occurring in subalpine forests 
(Harvey et al. 2016b). High-severity fires in subalpine forests historically recurred every 100-300 
years, driven by rare combinations of drought and high wind (Romme and Despain 1989, 
Whitlock et al. 2008, Higuera et al. 2011), and forests recovered rapidly (Turner et al. 1999). 
However, area burned is already increasing and climatically based fire rotations could shorten to 
< 30 years over the 21st century (Westerling et al. 2011). In this study, we used field and UAS 
data from paired short- and long-interval post-fire plots in Greater Yellowstone that last burned 
between 1988 and 2018 to ask:  
 

(1) How do short-interval fire, climate, and other factors (topography, distance to live 
edge) interact to affect post-fire forest recovery? We expected post-fire tree stem 
densities to be lower in short- (< 30-year) compared to long- (> 125-year) interval plots 
and drier post-fire climate to amplify differences between paired plots (Whitman et al. 
2019). We further hypothesized declines in post-fire stem density with warmer-drier 
topographic conditions and greater distance to live forest edge (Stevens-Rumann and 
Morgan 2019, Hoecker et al. 2020, Gill et al. 2021).  

 
(2) How do forest biomass and fuels vary following short- versus long-interval severe 
fires? After short-interval fire, we expected lower loads and delayed recovery of live and 
dead biomass and fuels (Donato et al. 2016, Turner et al. 2019, Stevens-Rumann et al. 
2020). In all plots, we expected large fuels (1000-hour downed wood or > 7.6 cm 
diameter snags) to comprise the majority of dead woody biomass.  

  
(3) How do different methods of UAS data collection affect derived measurements of 
forest structure and detection of standing dead snags? In a subset of three post-fire plots 
that burned 15 years prior and ranged from low to high tree density, we examined 
whether using ground control points (GCPs), collecting oblique in addition to nadir 
imagery, and detecting near-infrared light improved DAP-derived data.  
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Materials and Methods 
Study area  
 The GYE comprises 89,000 km2 (YNP 2017) of mostly federally managed land centered 
on Yellowstone and Grand Teton National Parks (Figure 1). Greater Yellowstone has cold, 
snowy winters and mild summers, with most annual precipitation falling as snow. Average 
summer temperature (1981-2010) is 12.3 °C, and annual precipitation averages 644 mm at 
centrally located Old Faithful in Yellowstone National Park (WRCC 2021). The region is 
expected to get warmer and drier over the 21st century, with lengthening fire seasons and harsher 
conditions for germination and establishment of young tree seedlings (Westerling et al. 2011, 
Romme and Turner 2015). Since 1950, the GYE has warmed +1.3 °C and annual snowfall has 
decreased by 25% (Hostetler et al. 2021). Soils are primarily derived from highly infertile, 
volcanic rhyolite; slightly less infertile andesite; or sedimentary parent materials (Despain 1990). 
 

 
Figure 1. (a) Reburns sampled in 2021 in the GYE. Different shades show perimeter of first 
fires, second fires (long-interval), and reburned areas (short-interval). (b) Location of GYE 
within United States. (c) Paired plot site in the 2016 Berry Fire reburn of the 2000 Wilcox Fire, 
Grand Teton National Park. Short-interval plots burned twice as stand-replacing fire and long-
interval plots only burned as stand-replacing in the most recent fire. Shading shows underlying 
topography. 
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 Subalpine forests cover much of the GYE between ~1900-3000 m elevation and 
historically recovered rapidly after infrequent severe fire due to prevalent serotinous lodgepole 
pine with its fire-stimulated canopy seed bank (Turner et al. 1999). Stand-level percent serotiny 
of lodgepole pine is highest at lower elevations (up to ~2300-2400 m; Tinker et al. 1994, 
Schoennagel et al. 2003). Other tree species in the subalpine zone include Douglas-fir 
(Pseudotsuga menziesii var. glauca) and quaking aspen (Populus tremuloides) at lower 
elevations, Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) at higher 
elevations, and whitebark pine (Pinus albicaulis) near upper treeline (Baker 2009). Douglas-fir, 
Engelmann spruce, subalpine fir, and non-serotinous lodgepole pine rely on wind dispersal from 
nearby live seed sources, and most seeds fall within 50 m of a live tree (McCaughey and Schmidt 
1987, Gill et al. 2021). Whitebark pine and quaking aspen can disperse over longer distances 
(Turner et al. 2003, Lorenz et al. 2011), and aspen can also resprout after fire (Baker 2009). 
 
Reburn and plot selection  
 We selected recent (1994-2018) fires that severely burned subalpine forests at both short 
(< 30-year; n = 16 "reburns") and long (> 125-year) intervals (Figure 1a; Eidenshink et al. 2007). 
We sampled 1-2 plot pairs per reburn that each consisted of a 0.25-ha short-interval plot burned 
twice as stand-replacing fire and a topographically similar, nearby 0.25-ha long-interval plot 
burned as stand-replacing in the same recent fire (Figure 1c). These data were augmented with 
previously collected paired plot data from 12 years after the 1988 fires (Schoennagel et al. 2003). 
Together, these datasets included 33 plot pairs (n = 66 plots) widely distributed throughout the 
GYE and representing a range of short fire return intervals, time since most recent fire, and 
topographic conditions (Figures 1a, 2). 

 
 
Figure 2. Histograms 
showing general 
characteristics of plots 
sampled in 2021 (n = 
44, this study) and 
2000 (n = 22) 
including elevation, 
aspect where 0 is 
southwest and 2 is 
northeast, slope, short 
fire interval, time 
since most recent fire, 
and year of most 
recent fire. Short fire 
interval is only 
summarized for short-
interval plots. 
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Field data collection 
 Forest recovery and fuels were sampled in 0.25-ha plots following standard methods 
(Nelson et al. 2016, Turner et al. 2019). Sapling/seedling, tree, and standing dead stem density 
were tallied in three parallel 2-m x 50-m belt transects. At 5-m intervals, we measured height, 
crown base height for live stems, and diameter at breast height (DBH) of the closest live tree by 
species and standing dead snag; height of the closest sapling/seedling by species; and cover and 
average height of shrubs by species in 0.25-m2 quadrats (n = 25 quadrats for 6.25-m2 per plot). 
Downed woody and forest floor fuels were quantified with five 20-m Brown’s planar intersect 
transects (Brown 1974) oriented randomly from plot center (total length = 100 m per plot). We 
recorded 1-h (< 0.64 cm diameter) and 10-h (0.64-2.54 cm) fuels along the first 3 m, 100-h 
(2.54-7.60 cm) fuels along the first 10 m, and sound and rotten coarse woody debris (> 7.6 cm 
diameter, 1000-h fuel) along the full 20 m. Litter and duff depth were recorded at 2-m intervals 
at three locations per transect (n = 15 measurements per plot). At plot center we measured aspect, 
slope, and distance to unburned live forest edge. If live edge was not visible or too far to measure 
in the field, this distance was estimated in ArcGIS Desktop 10.6 from aerial imagery and burn 
severity perimeters. Field data from 2000 included stem densities by species counted in four 
parallel 2-m x 50-m belt transects spaced 25 m apart (Schoennagel et al. 2003).  
 
Biomass and fuels calculations 
 We derived live tree, dead snag, lodgepole pine sapling, and shrub aboveground biomass 
using allometric equations (Cole 1971, Brown 1978, Gholz et al. 1979, Ker 1984, Harmon and 
Sexton 1996, Means et al. 1996, Ter-Mikaelian and Korzukhin 1997, Turner et al. 2004). Snag 
biomass was summarized by size classes corresponding to downed wood (i.e., 1-, 10-, 100-, and 
1000-h based on DBH). Canopy fuel load and bulk density were estimated from conifer tree 
crown biomass. Dead woody fuel biomass was computed for 1-, 10-, 100-, and 1000-h pools 
following Brown (1974) and correcting for slope. Litter and duff biomass were quantified based 
on average depth and bulk densities for lodgepole pine forest types (Brown et al. 1982; Nelson et 
al. 2016). 
 
Question 1: Effects of short-interval fire, climate, and other factors on forest recovery 
 We tested whether live tree stem densities were lower in short- versus long-interval fire 
with a one-sided, paired Wilcoxon signed rank test (n = 33 pairs, lower densities expected in 
reburns). Differences were also evaluated by species. For lodgepole pine, which was present in 
all plots, a two-sided, paired Wilcoxon signed rank test was used. For other species, which were 
absent from many plots and exhibited high variance relative to mean values, differences in 
presence and density between pairs were tested with zero-inflated negative binomial regression 
models adjusted for matched data (McElduff et al. 2010, Abadie and Spiess 2022). Subsequent 
analyses only used live conifer stem densities (i.e., excluding aspen). 
 
 Post-fire climate was characterized with water-year (October-September) climate water 
deficit and summer (June-August) vapor pressure deficit (VPD; Harvey et al. 2016b; Stevens-
Rumann et al. 2018; Davis et al. 2019). We used 4-km resolution climate data (TerraClimate; 
Abatzoglou et al. 2019) and summarized 30-year normal (1989-2018) and 3-year post-fire 
anomaly (z-score relative to normal). We assessed whether warmer-drier climate amplified 
differences in conifer stem density using Spearman’s rank correlations because pairwise 
bivariate distributions were not normal.  
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 The relative importance of drivers of post-fire stem density was tested with multiple 
linear regression models (n = 66 observations). Predictors included climate (climate water deficit 
normal and post-fire summer VPD anomaly), short-versus long-interval fire, lower (< 2350) 
versus higher elevation as a proxy for stand-level serotiny, topography (heat load index and 
topographic position index), and distance to unburned edge. Continuous predictors were not 
strongly correlated (Pearson’s |r| < 0.5) and were rescaled to have a mean of 0 and standard 
deviation of 1. Conifer stem density was log10-transformed to meet assumptions of linearity, 
normality, and equal variance, which were assessed with residual and quantile-quantile plots. We 
fit a full model including interactions between each predictor and short- versus long-interval fire. 
We used exhaustive model selection to identify the most important factors based on model 
Bayesian Information Criterion (BIC), retaining all models with difference in BIC < 2. 
  
Question 2: Forest biomass and fuels after short- versus long-interval fire 
 We assessed whether total live and dead tree biomass were lower in short- versus long-
interval fire with one-sided, paired t-tests (n = 22 pairs for live and n  = 21 for dead fuels, lower 
biomass expected following reburns) and tested whether differences were amplified at sites with 
drier normal climate water deficit using Spearman's rank correlations. Individual fuel pool 
differences were tested using either two-sided, paired t-tests or two-sided, paired Wilcoxon 
signed rank tests. Fuels were transformed as needed to meet normality based on quantile-quantile 
plots, and a Wilcoxon test was used if transformations did not result in normal distributions. 
Trees, canopy fuels, and very small snags were absent from > 40% of plots and were not tested 
for differences. Finally, fuel pools were averaged over 0-10, 10-20, and 20-30 years since fire to 
explore trajectories of biomass change and recovery following short- versus long-interval fire. 
 
Question 3: Comparing UAS data collection methods and derived forest measurements 
 In a subset of three 15-year-post-fire plots 
that burned in the 2006 Derby Fire and ranged from 
low to high post-fire tree density, overlapping 
imagery was acquired using a DJI Phantom 4 Pro 
V2.0. Eight GCPs were placed within or immediately 
outside the plot (Figure 3). One GCP was located at 
or near plot center, four at or near the midpoint on 
each side of the plot, and three distributed within the 
plot; starting from these locations, we placed GCPs 
in areas that were relatively flat and with minimal 
overhead vegetation that would obstruct the view 
from above. GCP locations were recorded with using 
an EMLID Reach RS2 base station and rover Global 
Positioning System (GPS) setup. Relative to the base 
station, GCP vertical accuracy averaged 0.011 m 
root-mean-square error (RMSE) and horizontal 
accuracy averaged 0.014 m RMSE. The UAS was 
equipped with two sensors, a conventional built-in 
sensor measuring red, green, and blue wavelengths 
(~660/550/470 nm, respectively; Fernandez-Figueroa 
et al. 2022; 20 megapixel resolution; hereafter 
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Figure 3. Plot and mission layout for UAS 
data collection.  
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"RGB") and a MAPIR Survey 3W sensor that measured red, green, and near-infrared 
wavelengths (660/550/850 nm, respectively; 12 megapixel resolution; hereafter "RGN"). 
Missions were flown within 1.5 hours of solar noon and planned using Map Pilot Pro software at 
40 m above ground level, although flying altitude varied due to underlying topography. Each plot 
was flown twice in a grid pattern (Figure 3), once with sensors directed straight down (nadir) and 
the second with sensors directed at an angle (oblique, 15° RGB, 10° RGN). Raw imagery (i.e., 
RAW format) was collected with 75% lateral overlap and either 75% forward overlap (RGB) or 
approximately 90% forward overlap (RGN). A photo of a MAPIR reflectance calibration target 
was taken immediately before each flight. 
 
 We performed DAP processing for different potential scenarios for ground control points 
(0, 1, 5, or 8) and sensor angles (nadir only or nadir plus oblique) for RGN imagery only, 
because we expected collecting near infrared reflectance would improve tree versus snag 
detection relative to RGB imagery. Prior to DAP processing, radiometric calibration was 
performed for RGN images using MAPIR software and the corresponding calibration reflectance 
target photo. RGB and RGN imagery were separately processed using Agisoft Metashape 
Professional 1.6.2 to create classified 3D point clouds, orthorectified image mosaics, and digital 
elevation models (DEMs) for each plot. Processing parameters included: ultra high accuracy 
(50,000 keypoints, 10,000 tiepoints), mild filtering, and point classification as belowground, 
ground, or aboveground (0.7 m cell size, 1.1° max angle, 1.0 m max distance, which were 
recommended as default values by local experts). The DEM was created from points classified as 
ground using Inverse Distance Weighting interpolation. 
 
 Forest structure estimation and snag classification was performed in R 4.1.3 (R Core 
Team 2022), primarily using the lidR package (Roussel et al. 2020). Point clouds were first 
filtered to remove duplicates and normalized to the DAP-derived DEM. Tree tops were located 
using points classified as aboveground (> 0.1 m height) and a 1 m diameter moving window to 
detect local maxima. Individual points were then assigned to a tree (i.e., tree segmentation; 
Dalponte and Coomes 2016). Trees > 1.4 m height were classified as either tree or snag using 
unsupervised k-means classification on the mean, max, and coefficient of variation of all three 
bands (RGB or RGN). Based on iterative trial runs, we used 10 clusters and classified snags as 
the cluster with the highest mean blue intensity for RGB or lowest mean near-infrared intensity 
for RGN. We classified all individual trees > 5 m height as snags given that young regenerating 
trees were shorter. Stems and snags were tallied by height class (live stems > 0.1 m height, trees 
> 1.4 m height, snags) and summarized by DAP-derived mean, 90th percentile, and max height. 
Total live aboveground biomass was estimated by summing individual whole tree biomass 
derived from allometric equations based on height (Brown 1978). Plot measurements derived 
from UAS DAP were compared to field measurements using 1:1 lines and normalized RMSE; 
differentiation between snags and trees was visually assessed based on point clouds; and 
sampling effort, cost, post-processing time, and point cloud and DEM error and resolution were 
evaluated for different data collection methods. 
 
 All analyses and visualizations were performed in ArcGIS Desktop 10.6 and R. Code and 
data are publicly available on Github (https://github.com/kbraziun/Braziunas_etal_SILI and 
https://github.com/kbraziun/PointCloudProcessing). 
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Results and Discussion 
Question 1: Effects of short-interval fire, climate, and other drivers on forest recovery  
 Live stem densities were an order of magnitude lower following short- compared to long-
interval fire (mean 3,240 versus 28,741 stems ha-1, median 2,000 versus 5,000 stems ha-1, 
respectively; Figure 4). Tree species presence did not differ between plot pairs, but conifer 
densities were 68-92% lower following short-interval reburns (Figure 5, Table D1). In contrast, 
aspen density was over 500% higher in short-interval plots (Figure 5, Table D1). 
 

 
Figure 4. (a) Total live stem density boxplots for long- and short-interval plots. Points show raw 
data. Differences are significant at p = 0.0002 based on a one-sided, paired Wilcoxon signed rank 
test (test statistic V = 478, n = 33 pairs). (b) Aerial view of forest recovery and variation in fuels 
following the 2006 Derby Fire, which reburned the 1990 Iron Mountain Fire as short-interval fire 
(left) and burned older forest as long-interval fire (right). Photo credit: Kristin Braziunas 
 

 
Figure 5. Stem 
density by species 
in long- versus 
short-interval plots 
(n = 33 pairs). 
Points are means ± 
1 standard error. 
Differences in 
lodgepole pine 
density were 
tested with a two-

sided, paired Wilcoxon signed rank test (test statistic = V). Differences in density for other 
species were tested with zero-inflated negative binomial regression models adjusted for matched 
data (test statistic = t, df = n - 1). ABLA: Subalpine fir, PIAL: Whitebark pine, PICO: Lodgepole 
pine, PIEN: Engelmann spruce, POTR: Quaking aspen, PSME: Douglas-fir. 
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 Warmer-drier climate was associated with greater differences in conifer density between 
paired plots. Differences in long- minus short-interval stem density were strongly positively 
correlated with climate water deficit normal (𝜌 = 0.67, p = 0.00002, n = 33; Figure 6a) and 
weakly positively correlated with summer vapor pressure deficit anomaly (𝜌 = 0.34, p = 0.05, n 
= 33; Figure 6b). 
 

 
Figure 6. Pairwise relationships between (a) climate water deficit normal (1989-2019) or (b) 3-
year post-fire summer vapor pressure deficit (VPD) anomaly and differences in live conifer stem 
density in long- minus short-interval paired plots (n = 33). Differences in conifer density have 
been cube-root transformed for plotting. Interactions between fire interval and (c) climate water 
deficit normal or (d) distance to unburned forest edge explained post-fire live conifer stem 
density (n = 66). Points and lines are colored by long- (light peach) or short-interval (dark red) 
fire. Y axis is on a log10 scale. Lines are linear fits and shading is standard error. 
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 Higher post-fire stem densities were best explained by long fire return intervals, higher 
climate water deficit normal (i.e., warmer-drier conditions), and interactions of fire interval with 
both distance to unburned edge and deficit (Figure 6c,d; Table 1). Following short-interval fire, 
stem densities declined at farther distances from unburned edge and diverged from long-interval 
densities with warmer-drier climate. Models explained a relatively low amount of variation 
(adjusted R2 < 0.3 for all models), and most variance was explained by the main effects of fire 
interval and climate water deficit (adjusted R2 = 0.23 for model without interactions). 
 
Table 1. Multiple linear regression models predicting stem density (log10-transformed) from 
multiple factors and potential interactions with short-interval fire.  

Model DBIC Adj. 
R2 Predictor Estimate SE t p 

Model 1 0 0.28 (Intercept) 3.70 0.13 29.01 2×10-37 

   Fire interval (short) -0.74 0.18 -4.03 0.0002 

   Climate water deficit normal 0.28 0.09 3.02 0.004 

   Distance to unburned:Fire interval 
(short) 

-0.34 0.16 -2.19 0.03 

   Distance to unburned:Fire interval 
(long) 

0.12 0.12 0.96 0.34 

Model 2 0.7 0.27 (Intercept) 3.74 0.12 30.60 4×10-39 

   Fire interval (short) -0.67 0.17 -3.87 0.0003 

   Climate water deficit normal 0.43 0.12 3.55 0.0008 

   Climate water deficit normal:Fire 
interval (short) 

-0.37 0.17 -2.12 0.04 

Model 3 1.1 0.23 (Intercept) 3.74 0.13 29.77 8×10-39 

   Fire interval (short) -0.67 0.18 -3.77 0.0004 

   Climate water deficit normal 0.25 0.09 2.81 0.007 

Model 4 1.7 0.29 (Intercept) 3.72 0.13 29.17 4×10-37 

   Fire interval (short) -0.74 0.18 -4.01 0.0002 

   Climate water deficit normal 0.40 0.13 3.09 0.003 

   Distance to unburned:Fire interval 
(short) 

-0.28 0.16 -1.72 0.09 

   Climate water deficit normal:Fire 
interval (short) 

-0.24 0.19 -1.30 0.20 

   Distance to unburned:Fire interval 
(long) 

0.07 0.12 0.59 0.56 

Note: Continuous predictors were standardized to have a mean of 0 and standard deviation of 1. 
 
Question 2: Forest biomass and fuels after short- versus long-interval fire 
 Short-interval plots had over seven times less aboveground live tree/shrub biomass and 
half as much dead woody biomass compared to long-interval plots (Figures 7, 8). Warmer-drier 
site conditions amplified differences in live (𝜌 = 0.63, p = 0.002, n = 22) but not dead biomass (𝜌 
= 0.14, p = 0.5, n = 21; Figure 9). Differences in live biomass were reflected in tree biomass, 
available canopy fuel load, canopy bulk density, and lodgepole pine sapling biomass. Live shrub 
biomass was low and similar between plot pairs. 
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Figure 7. Biomass and fuels following long- versus short-interval fire. Solid points are mean 
values with 95% confidence intervals. Shaded points show all data. All values are in Mg ha-1 
unless otherwise noted. All n = 22 except for shrubs (n = 20) and dead surface fuels (n = 21). 
Shown p-values are results of either Wilcoxon signed rank or paired t-test (see Table D2). CFL: 
Canopy fuel load, CBD: Canopy bulk density, DWD: Downed woody debris. 
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Figure 8. Illustrative photos of long- and short-interval plot pairs highlighting differences in live 
woody biomass and associated conifer regeneration density, dead woody biomass and fuels, and 
aspen regeneration density. Photo credit: Kristin Braziunas 
 

Compared to long-interval plots, short-interval paired plots had…

…seven times less live tree/shrub biomass.

…half as much dead woody biomass.

…five times higher aspen density.
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Figure 9. Pairwise relationships between climate water deficit normal (mm; 1989-2018) and 
actual and relative differences in paired long- and short-interval aboveground live tree/shrub (n = 
22) and dead woody (n = 21) biomass. Plots show the strength of pairwise relationships 
(Spearman's rank correlation) and significance (p-value). 
 
 Individual snag and downed woody pools were highly variable and mostly did not differ 
between short- and long-interval plots (Figure 7). Large, 1000-h (> 7.6 cm diameter) snags were 
the primary driver of lower dead woody fuel loads in short-interval plots (Figures 4b, 7). 
Although the majority (> 80%) of dead woody fuels were in 1000-h pools in all plots, the 
proportion of dead wood in 100-h fuels increased from 2 to 15% following short-interval reburns 
(Figure 10). Litter and duff loads did not differ between plot pairs. 
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Figure 10. Biomass of dead woody fuels by size class, including standing dead snags and 
downed woody debris. 
 
 Total live plus dead biomass increased over time following long-interval fire and 
allocation shifted among standing dead, downed wood, and live pools; in contrast, total live plus 
dead biomass changed little during the first 30 years after short-interval fire (Figure 11). Live 
tree biomass accumulated more rapidly following long- compared to short-interval stand-
replacing fire. Long-interval plots had much higher snag biomass immediately after fire, which 
increased accumulation of downed wood over time.  
 

 
Figure 11. Aboveground live and dead biomass pool trajectories following (a) long- and (b) 
short-interval fire. Pools are averaged in 10-year bins (0-10, 10-20, and 20-30 years since fire). 
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Question 3: Comparing UAS data collection methods and derived forest measurements 
 All UAS data collection methods resulted in underprediction of stem, tree, and snag 
density, as well as total tree biomass in young, dense, post-fire stands (Figures 12, 13). DAP-
derived data from RGB imagery accurately ranked plots in order from low to medium to high 
density and biomass for all stems, trees, and snags. In contrast, using RGN imagery did not 
consistently differentiate between medium- and high-density plots. Height was better estimated 
than density for both sensors, but only RGB imagery enabled the detection of the tops of tall 
snags (Figure 14). The use of GCPs and oblique sensor angles had minimal effect on all forest 
structure metrics derived from RGN imagery, and the highest quality RGN dataset (8 GCPs, 
nadir plus oblique imagery) did not consistently outperform other RGN datasets (Figures 12, 13). 
 

 
Figure 12. Comparison of UAS and field measurements for metrics of forest structure, relative 
to a 1:1 black line. Four data collection scenarios are shown. RGB: Red, green, and blue band 
sensor; RGN: Red, green, and near-infrared band sensor; GCP: Ground control point. 
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Figure 13. Normalized RMSE for UAS DAP-derived measurements of forest structure relative 
to field measurements. Normalized RMSE is RMSE divided by the mean observed value, which 
enables comparison across metrics with different units. Solid points are mean values ± 1 standard 
error for each measurement type, shaded points are all observations. RMSE: Root-mean-square 
error; RGB: Red, green, and blue band sensor; RGN: Red, green, and near-infrared band sensor; 
GCP: Ground control point. 
 

 
Figure 14. Point clouds for the medium density plot showing points classified as snags (left) and 
trees (right) using the RGB sensor (top) and RGN sensor (bottom). Both point clouds included 
nadir plus oblique images post-processed with 8 GCPs. Dashed lines show approximate plot 
boundary. 
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 Sampling effort, cost, post-processing time, and point cloud and DEM error and 
resolution differed among UAS data collection methods (Table 2).  
 

Sampling effort: Use of GCPs greatly increased sampling effort. Establishing GCPs in the 
field, recording GPS coordinates, and re-collecting GCPs following imagery acquisition 
was comparable to the time required to collect field data. This process usually required an 
extra visit to the plot and contributed to trampling and downed wood breakage within the 
plot, which can affect both DAP-derived and field measurements. Including oblique as 
well as nadir imagery required minimal additional effort (15-20 min for a flight, 1 extra 
battery), because the same plot setup and flight plan could be used with minor changes.  

 
Cost: The additional cost of the RGN sensor with accessories (~$700) plus GPS setup 
(~$1900) was equivalent to the cost of the DJI drone plus extra batteries (~$2500). 
 
Post-processing time: Dense cloud processing takes the most computation time, so is 
used to compare approaches. Dense cloud processing of RGN imagery required 
substantially more time than RGB imagery (Table 2), most likely because there were 
approximately three times more images. Low density plots consistently took longer than 
higher density plots. Processing time can be reduced by filtering images or adjusting 
parameters, and processing is mostly automated. However, identifying GCP locations 
took 1-2 hours of hands-on time per plot, depending on the number of GCPs and images. 
 
Point cloud and DEM error and resolution: Reprojection error, which measures the 
quality of image alignment, was consistently lowest while output resolution was 
consistently highest for the RGB compared to RGN sensor (Table 2). Point cloud density 
tended to be slightly higher when nadir plus oblique imagery was combined, although 
DEM resolution was similar. Using GCPs did not markedly alter error or resolution. 
 

Table 2. Comparison among processing times, error, and spatial resolution after removal of 
duplicates for different methods of UAS data collection and plot tree density. Use of fewer GCPs 
had minimal effects on values presented in this table, so are not shown here. 

Sensor 
(Mpix) 

Angle GCPs Tree 
density  

Dense cloud 
processing (hrs) 

Reprojection 
error (pix) 

Point density 
(pts cm-2) 

DEM 
resolution (cm) 

RGB 
(20) 

Nadir + 
Oblique 8 

Low 19 0.55 0.58 1.58 

Medium 13 0.58 1.34 1.51 

High 8 0.41 1.40 1.65 

RGN 
(12) 

Nadir + 
Oblique 8 

Low 77 3.37 0.28 2.55 

Medium 55 3.06 0.58 2.43 

High 42 2.81 0.53 2.69 

RGN 
(12) 

Nadir 
only 8 

Low 30 3.32 0.26 2.51 

Medium 20 3.00 0.45 2.44 

High 15 2.87 0.43 2.66 

Mpix: Megapixels; GCPs: Ground control points; RGB: Red, green, and blue wavelengths; 
RGN: Red, green, and near-infrared wavelengths 
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Discussion 
 Interacting drivers amplify effects on forest recovery. Independent effects of short-
interval reburns, post-fire drought, and long distances to unburned forest on post-fire conifer 
densities are well documented (Stevens-Rumann and Morgan 2019), and here we found 
amplifying interactions. This is particularly concerning in western US forests, where current 
trends in climate, area burned, and stand-replacing fire indicate that these three conditions will 
co-occur with increasing likelihood (Harvey et al. 2016b, Westerling 2016, Buma et al. 2020). 
Interactions among drivers alter the likelihood of crossing recovery thresholds and the rate of 
ecosystem transformation (Scheffer and Carpenter 2003, Ratajczak et al. 2018). Our findings 
suggest that places where these drivers overlap could experience slower rates of forest recovery 
or be early hotspots for surprising forest change (Figure 15). 
 

 
Figure 15. Potential recovery trajectories for aboveground biomass (live plus dead) after stand-
replacing long- or short-interval fire. The starting point for each trajectory is the residual dead 
woody biomass after the fire. Following long-interval fire (a, light peach), biomass recovers 
rapidly to pre-fire levels. Following short-interval fire (b, solid dark red), biomass recovery is 
delayed and slower due to lower initial levels of dead biomass and tree regeneration. Average 
regeneration densities are sufficient that full biomass recovery is likely in the absence of 
subsequent disturbance. Amplifying effects of warmer-drier climate and/or long distances from 
seed source could further delay biomass recovery (c, dashed dark red) or potentially result in 
only partial biomass recovery if post-fire tree density is insufficient for self-replacement (d, 
dotted dark red). If stand-replacing fires reburn forests before they have recovered to pre-fire 
conditions, forests may be vulnerable to sustained reductions in biomass. LI: Long-interval; SI: 
Short-interval. 
 
 Aspen, on the other hand, emerged as a potential winner in a more fiery future. Quaking 
aspen effectively colonizes recently burned areas from seed via long-distance dispersal (Turner 
et al. 2003). Our results indicate that once underground root structures are established aspen 
resprout successfully and in abundance after short-interval reburns. Aspen is a keystone species 
of global importance for biodiversity (Rogers et al. 2020), and warmer climate is associated with 
inhibited growth and dieback of quaking aspen in the Rocky Mountains (Hanna and Kulakowski 
2012). Our results highlight a potentially positive effect of climate-driven increases in short-
interval fire, which by stimulating aspen regeneration may enable aspen expansion in favorable 
areas. Similarly, severe fire has catalyzed transitions from conifer to deciduous dominance in 
boreal forests (Johnstone et al. 2010; Mack et al. 2021). 
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 Contrary to our expectations, warmer-drier site conditions were generally associated with 
higher conifer seedling densities, despite amplifying differences between short- and long-interval 
plots. This in part reflects the higher prevalence of lodgepole pine serotiny (Tinker et al. 1994) 
and longer growing seasons at lower elevations, which tend to be warmer and drier. An abundant 
serotinous seed bank may buffer forest recovery against shorter fire intervals. However, our 
results show that short-interval fire alters the strength of the relationship with average site 
climate, and Stevens-Rumann et al. (2018) found that 30-year climate water deficit switched 
from being associated with higher to lower likelihood of post-fire forest replacement under 
future conditions. In warm-dry subalpine sites, the negative effects of future drying on seedling 
establishment are likely to outweigh the positive effects of warming (Hansen and Turner 2019). 
 
 Reburns alter fuel recovery trajectories and potential future burn severity. Delayed 
recovery of live canopy fuels following short-interval stand-replacing fire suggests a lower 
likelihood of crown fire for 30 years or more following reburns. Average canopy bulk density in 
long-interval plots was already above an active crown fire threshold of 0.10 kg m-3 (Cruz et al. 
2005), whereas average short-interval bulk density was well below. Self-regulating effects of 
past fires on future fire spread and burn severity are often short-lived (Parks et al. 2015, Buma et 
al. 2020), especially in subalpine forests (Harvey et al. 2016b), but our data show that regulation 
of canopy burn severity could be lengthened following short-interval fires.  
 
 Surface fire spread relies on fine surface fuels, which did not differ between plot pairs, 
suggesting future surface fire spread may be unaffected by reburns. Although we did not 
quantify herbaceous fuels, Schoennagel et al. (2004) found that herb and grass cover did not 
differ 12 years after short- versus long-interval fire in this region. Coarse woody debris does not 
contribute substantially to fire spread rates, but higher loadings can increase residence time, burn 
severity, and resistance to fire control (Graham et al. 2004, Sikkink and Keane 2012). Downed 
coarse wood loads of 22-67 Mg ha-1 balance ecological benefits with fire hazard in cool-climate, 
post-fire forests (Brown et al. 2003). Average loadings following short-interval fire were within 
this range, but average long-interval loadings including large snags were much higher. Thus, 
short-interval reburns may reduce future surface burn severity even if they do not limit spread. 
 
 Implications for forest resilience and change. Overall, our results suggest that some 
characteristics of forest resilience remain intact after short-interval fire, while others are 
diminished or lost. All plots had tree seedlings and average densities in reburned areas were 
sufficient for self-replacement (Kashian et al. 2005), indicating that forest regeneration could be 
considered resilient even after two severe fires within a few decades (Figure 15). In terms of 
material disturbance legacies, downed coarse wood, which provides regeneration microsites, 
energy, nutrients, and carbon in post-fire environments (Harmon et al. 1986, Franklin et al. 
2007), remained high following short-interval fires. In contrast, large standing snags, which 
serve as critical wildlife habitat for several bird species (Hutto 1995), were virtually absent in 
reburns. Total live and dead biomass was also much lower in reburns, and biomass accumulation 
was dampened relative to long-interval fire. These results suggest that short-interval fires weaken 
forest contributions to climate regulation via carbon sequestration. These diminished capabilities 
could be long-lasting and further amplified if stands reburn again within a few decades (Figure 
15; Turner et al. 2019; Hayes and Buma 2021). However, negative feedbacks on burn severity 
from reduced fuel loads could still mitigate future fire effects and transitions to deciduous 
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species could enhance carbon uptake (Mack et al. 2021).Results of this study underscore the 
importance of considering amplifying interactions among drivers, the need for quantifying 
recovery over time scales long enough to detect trends, and the power of paired design to 
improve causal inferences from observational data. Interactions among multiple drivers 
diminished and delayed forest recovery and could lead to rapid, surprising changes in forest 
resilience during the 21st century. 
 
 Low-cost UAS shows promise and limitations for measuring young, dense conifer forests.  
Our results support the use of a low-cost UAS "out-of-the-box" for measuring some aspects of 
forest structure. Following standard approaches and without the use of training data, DAP 
processing of imagery collected with the built-in, 20 megapixel RGB sensor produced high-
resolution point clouds, DEMs, and orthomosaics across a range of plot densities; captured 
relative differences in plot density; differentiated between snags and trees based on a 
combination of spectral information and height; and estimated reasonable stem heights. Our 
results also indicated that the labor-intensive deployment and post-processing of GCPs was not 
justified in this context. The most likely reason for the poorer performance of the RGN sensor 
was its lower spatial resolution (i.e., 12 megapixels). Even though the RGB sensor did not have a 
near infrared band, analyses using this imagery effectively differentiated live versus dead stems 
in young, post-fire plots. High-cost, cutting-edge technology or novel methods may be necessary 
for specific research applications (e.g., precision agriculture planning; Hunt and Daughtry 2018). 
However, we propose that for forest inventory and management, lower-cost and -capability 
systems may provide the necessary level of detail. Priority should be placed instead of 
identifying efficient data collection and processing approaches that can be consistently applied 
by different UAS pilots across multiple geographic regions. 
 
 Our methods of deriving post-fire forest structure from UAS data highlighted limitations 
and opportunities for improvement. Estimating tree density in young, post-fire, lodgepole pine 
dominated plots is particularly challenging, because plots often consist of small, densely packed 
trees with overlapping crowns. In our study, estimated biomass was the sum of individual trees 
and therefore errors in density estimation were propagated as errors in biomass estimation; for 
young forests where accurately estimating density is more error prone, a different approach 
should be used to derive tree biomass. A high-resolution, lidar-derived DEM could improve 
height estimates, especially when tree density is high, because lidar can penetrate the forest 
canopy (Wallace et al. 2016). Combining a single lidar flight with repeated imagery flights is 
recommended for creating a baseline forest inventory that can be regularly updated at low 
additional cost (Goodbody et al. 2019). 
 
Science Delivery 
 The findings of this study were presented as part of a PhD Exit Seminar, 
"Operationalizing resilience of social-ecological systems to changing climate and fire in US 
Northern Rocky Mountain forests" in December 2021, which was a hybrid in person and online 
seminar, enabling broad participation. This work was also presented in a virtual Ecology and 
Evolutionary Biology Seminar at Kansas State University, "Anticipating future forests: 
Resilience, risk, and ecosystem services under changing climate and fire" (March 2022). A more 
general discussion of how forest and fire ecologists conduct research, including questions asked 
as part of this study, was included in two presentations to members of Madison, Wisconsin 
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Chapters of the P.E.O., which awarded a fellowship that partially supported Kristin Braziunas 
and this work (presentation title: “Sources of ignition: Becoming a fire ecologist”, March-April 
2021), and in a profile of Kristin Braziunas in Vital Signs 2020, a publication by Grand Teton 
National Park. Results of this study informed portions of a field tour led by Monica Turner in 
July 2022 for the Superintendent of Grand Teton National Park and his leadership team. Findings 
will further be presented in a webinar on reburns hosted by the Northern Rockies Fire Science 
Network in March 2023 with co-presenter Tyler Hoecker (Climate Adaptation Postdoctoral 
Fellow, Northwest Climate Adaptation Science Center, University of Washington), who will 
present his work on short-interval fires and forest recovery in Glacier National Park.  
 
 A peer-reviewed journal article funded by this project (Braziunas et al., "Less fuel for the 
next fire? Warmer-drier climate amplifies effects of short-interval fire on forest recovery") is 
currently under review in Ecology. Data will be deposited at the Environmental Data Initiative 
upon acceptance for publication. A second journal article presenting post-fire understory plant 
communities following short- versus long-interval fire ("Peeking under the canopy: effects of 
short fire-return intervals on herbaceous understories of Greater Yellowstone," lead author 
Nathan G. Kiel) is in preparation; data were collected during the same field season in the same 
paired plots. N. G. Kiel presented this work at both the University of Wisconsin-Madison Center 
for Ecology and the Environment's Spring Symposium and the Biennial Scientific Conference on 
the Greater Yellowstone Ecosystem in May 2023. This work also informed N. G. Kiel's 
presentation to the Teton Chapter of the Wyoming Native Plants Society titled, "Peeking under 
the canopy: climate, fire, and Greater Yellowstone plant communities." 
 
 Given disruptions to field work, project timeline, and conference activity due to COVID, 
some deliverables have changed from the original proposal. K. H. Braziunas prioritized 
presenting results to targeted audiences in multiple virtual presentations rather than at a virtual 
conference or via a YouTube video. Drone imagery will be used in planned print and video 
products aimed at communicating to general audiences the potential magnitude of climate-driven 
landscape changes in Greater Yellowstone (Turner et al., in preparation). In addition, excellent 
best practice guides already exist for UAS data collection and processing; these are referenced in 
Github documentation. Code and data analysis associated with this project are publicly available 
via Github (https://github.com/kbraziun/Braziunas_etal_SILI and  
https://github.com/kbraziun/PointCloudProcessing). 
 

Conclusions 
Key Findings 
 Our study revealed that declines in subalpine forest recovery were amplified by 
interactions between climate and fire. Mean post-fire stem density was an order of magnitude 
lower following short- versus long-interval fires, and differences increased with greater annual 
climate water deficit. Because this amplification was most pronounced in landscape positions 
with a generally warmer-drier climate (i.e., 30-year normal), and only weakly related to 
anomalously warm-dry weather during the early post-fire years, our results suggest greater 
vulnerability to change at sites where moisture thresholds are already close. Furthermore, conifer 
regeneration in areas with historically robust serotinous seed banks is increasingly reliant on ex 
situ seed sources after short-interval fire and vulnerable to propagule limitation when far from 
unburned forest edges. Together, our findings suggest a trifecta of large stand-replacing patches 
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of short-interval fire in areas of higher moisture stress could threaten subalpine forest resilience. 
Differences in post-fire biomass between short- and long-interval plots highlight nuanced 
feedbacks between developing fuels and subsequent fire. Although many short-interval reburns 
had abundant downed wood, they had minimal additional input from snags and a higher 
proportion of fuels in smaller size classes that could decompose quickly or burn readily if fire 
recurs. In contrast to rapid recovery after long-interval fire, live biomass and canopy fuels 
remained low nearly 30 years after short-interval fire, suggesting prolonged self-regulation of 
future burn severity and delayed recovery of pre-fire biomass. 
 
 Using low-cost UAS, built-in sensors, and standard data processing and analysis methods 
can effectively characterize some aspects of young, post-fire forest structure such as height. 
However, for estimating density and biomass, additional steps and consideration are necessary. 
UAS output resolution and forest measurement accuracy were similar regardless of whether 
ground control points were used in data processing.  
 
Management Implications 
 Forest structure and composition is expected to change substantially under future climate 
warming and fire activity. This will affect large areas of publicly owned and managed land, 
which provide a wide variety of public goods and ecosystem services such as timber, wildlife 
habitat, carbon storage, and scenic beauty. Forest managers will be on the front lines of 
navigating these changes. Our results suggest that areas where short fire interval, warm-dry 
climate position, and long distance to unburned forest edge overlap may be particularly 
vulnerable to reduced and slowed recovery of post-fire biomass. These could be high priority 
areas for replanting, if reforestation is desirable and likely to succeed, or areas where transitions 
to different forest conditions or to non-forest should be accepted, if future climate is likely to 
exceed tolerances of seedlings and trees. Some potential changes may be desirable in certain 
management contexts, such as increases in aspen density following short-interval fire. 
 
 Changing fuel loads after short-interval fire will likely affect fire behavior and effects, 
with implications for forest management and fire suppression. In areas such as Greater 
Yellowstone, forests historically recovered rapidly after long-interval fire and were able to burn 
again at high-severity after only a decade. Our results suggest that short-interval fire will delay 
biomass and fuels recovery in young, lodgepole pine-dominated forests, thus lengthening the 
time that post-reburn forests limit future fire intensity and spread. Considering the location and 
extent of reburned areas could be useful for anticipating fire behavior at landscape scales and 
planning fire suppression activities. In addition, reburns had lower loads of downed coarse wood 
relative to young forests recovering from long-interval fire. They may therefore provide better 
access or escape routes for firefighters. 
 
 Acquiring forest inventory measurements using UAS and DAP is well researched and 
understood, and this technology is primed for widespread use by forest managers. There are 
excellent resources already available documenting best practices, and established software and 
tools enable standardized data processing and analysis (see links on point cloud processing 
Github). UAS can be procured at low cost and learning to pilot a UAS requires some training and 
formal testing, but not highly specialized skills. One of the primary barriers we faced was flight 
restrictions; we were not allowed to fly over National Parks or any Department of Interior lands 



 24 

due to policy restrictions at the time. It is important to identify and regulate the use of UAS, for 
example when they would interfere with air traffic, pose a threat to people or wildlife, or 
interfere with recreation or enjoyment of natural areas. However, we also suggest that aligning 
regulations to promote targeted use of UAS, especially by researchers and managers, could be 
desirable for generating large amounts of valuable forest data (Coops et al. 2019). Because UAS 
can be flown over areas that cannot easily be sampled (e.g., across a stream or river, or in steep 
topography where ravines or slopes make sites inaccessible), data derived from UAS can reduce 
personal safety risks to researchers. 
 
Future Research 
 Our project suggests several opportunities for future research: 
  
 Fire behavior and post-fire fuels when forests reburn again. How will reburns affect 
future fire behavior, and how will fuel loads change if forests continue to burn more frequently? 
Our work suggests that reburns may reduce future fire intensity and severity, but not spread. 
These findings are consistent with the results of simulation modeling studies in the region 
(Braziunas et al. 2021, Turner et al. 2021). Future work should evaluate these expectations in 
areas that burn a third time at short, or even long, intervals. Changing fuel complexes, such as 
lower loads of large coarse woody logs but relatively higher proportions of small 100-h downed 
wood in reburns, could have nuanced effects on fire behavior and ecological impact.  
 
 Reburns, climate change, and recovery at regional to continental scales. How are 
interactions between changing climate and more frequent fire affecting forests across the western 
US? Effects of forest recovery and change after reburns have been highlighted in many recent 
studies (e.g., Whitman et al. 2019, Hayes and Buma 2021, Hoecker and Turner 2022). Syntheses 
of existing studies or broad-scale remote sensing studies should focus on similarities or 
differences among forest types and explore how interactions among multiple changing drivers 
(climate, fire frequency, seed availability) are likely to affect forests at continental scales. 
 
 The changing role of serotiny. How will prevalence and patterns of serotiny be affected 
by changes in fire activity? Stand-level percent serotiny of lodgepole pine in Greater 
Yellowstone varies with elevation and fire history (Tinker et al. 1994, Schoennagel et al. 2003). 
If fires occur more frequently and fires burn young stands before they have developed a 
serotinous seed bank, this may alter the relative share of serotinous and non-serotinous 
individuals in regenerating stands.  
 
 Robust evaluation of using oblique in addition to nadir imagery. How do images 
collected from multiple angles affect detection and measurement of trees and snags? Because our 
comparison between nadir-only and nadir plus oblique imagery was restricted to the RGN 
sensor, which did not detect standing dead snags well under either scenario, we propose that this 
is still an open research question. Including oblique sensor angles should provide additional data 
points to better characterize tall, small-diameter objects such as snags, and snag heights were 
well characterized by using RGB nadir plus oblique imagery. We suggest that future research 
should compare nadir-only, oblique-only, and different sensor angles to explore how this affects 
tree and snag detection and characterization. Depending on the total area flown, including 
multiple sensor angles (and multiple flights) in a mission may require minimal additional time 
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and effort, because many steps of mission planning do not need to be repeated. 
 
 Increased acquisition and assessment of UAS data for forest inventories. How well can 
forest structure, age, and composition be estimated using UAS-derived imagery across multiple 
forest types and conditions? Our project was limited to three plots in a similar forest type, stand 
age, and disturbance history. Estimates of forest structure derived from UAS DAP are more 
accurate when trees are large and widely spaced (Belmonte et al. 2020, Creasy et al. 2021). We 
recommend UAS be deployed across a wide range of forest conditions to assess how well actual 
and relative values are estimated. Priority should be placed on using low-cost systems with 
standardized approaches to data collection and processing that could enable data collection by 
many individuals across multiple management units and agencies, or by citizen scientists where 
appropriate. 
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Articles in peer-reviewed journals 
 
Braziunas, K. H., N. G. Kiel, and M. G. Turner. In review. Less fuel for the next fire?  
Warmer-drier climate amplifies effects of short-interval fire on forest recovery. Ecology.  
 
Kiel, N. G., K. H. Braziunas, and M. G. Turner. In prep. Peeking under the canopy: effects of 
short fire-return intervals on herbaceous understories of Greater Yellowstone. 
 
Graduate dissertation 
 
Braziunas, K. H. 2021. Operationalizing resilience of social-ecological systems to changing 
climate and fire in US Northern Rocky Mountain forests. PhD Dissertation. University of 
Wisconsin-Madison. 
 
Oral presentations and webinars 
 
Braziunas, K. H. and T. J. Hoecker. Lessons from reburns in Greater Yellowstone and Glacier. 
Northern Rockies Fire Science Network Webinar. Planned for March 15, 2023. 
 
Braziunas, K. H. Anticipating future forests: Resilience, risk, and ecosystem services under 
changing climate and fire. Ecology and Evolutionary Biology Seminar, Division of Biology, 
Kansas State University. March 2022. 
 
Braziunas, K. H. Operationalizing resilience of social-ecological systems to changing climate 
and fire in US Northern Rocky Mountain forests. PhD Exit Seminar, Integrative Biology, 
University of Wisconsin-Madison. December 2021. 
 
Braziunas, K. H. Sources of ignition: Becoming a fire ecologist. 2 invited talks, Philanthropic 
Educational Organization (P.E.O.) Madison Chapter DH, Madison Chapter DV. March-April 
2021. 
 
Kiel, N. G., K. H. Braziunas, and M. G. Turner. 2022. Peeking under the canopy: effects of short 
fire-return intervals on herbaceous understories in Greater Yellowstone. (Oral presentation). 
Biennial Scientific Conference on the Greater Yellowstone Ecosystem, Bozeman, Montana, May 
15-18.  
 
Kiel, N. G., K. H. Braziunas, and M. G. Turner. 2022. Peeking under the canopy: effects of short 
fire-return intervals on herbaceous understories in Greater Yellowstone. (Oral presentation). 
UW-Madison Center for Ecology and the Environment’s Spring Symposium, Madison, 
Wisconsin, May 2-3. 
 
Kiel, N. G. 2022. Peeking under the canopy: climate, fire, and Greater Yellowstone plant 
communities. Public talk (virtual), Teton Chapter, Wyoming Native Plants Society, Jackson, 
Wyoming. 
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Selected media coverage and outreach 
 
McKinney, Holly. Researcher in the Park. Grand Teton National Park and John D. Rockefeller 
Memorial Parkway: Vital Signs 2020. (https://www.nps.gov/grte/learn/nature/upload/2020-
GRTE-Vital- Signs-Web-access-final.pdf) 
 
Field tour for Superintendent and leadership team of Grand Teton National Park, led by M. G. 
Turner. July 11, 2022. 
 
Code for reproducing analyses 
 
Braziunas, K. H. Code associated with Less fuel for the next fire? Warmer-drier climate 
amplifies effects of short-interval fire on forest recovery. Currently available for peer reviewers 
(https://github.com/kbraziun/Braziunas_etal_SILI). 
 
Braziunas, K. H. Code for reproducing R analysis deriving forest structure from UAS point 
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Appendix C: Metadata 
 
 Newly collected field data and associated metadata will be deposited upon manuscript 
acceptance at the Environmental Data Initiative. Data will be described and documented in 
accordance with the Ecological Metadata Language standard, and the dataset will be assigned a 
permanent, unique URL and DOI. The original Data Management Plan stated that data would be 
deposited with the USDA Forest Service Research Data Archive; instead, we will cross-list the 
deposited data in this archive.  
 
 Processed point clouds derived from UAS DAP are available, along with additional post-
processing code, on Github (https://github.com/kbraziun/PointCloudProcessing). 
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Appendix D: Supplemental Tables 
 
Table D1. Presence (proportion of plots) and stem density (stems ha-1) by species in long- and 
short-interval plots (n = 33 of each).  

Species 
Presence  
Proportion Test 

statistic p 

Stem density 
Mean (SE) 
Range 

Test 
statistic p 

Long Short Long Short 
ABLA 0.27 0.21 0.77 0.45 97 (53) 

0-1667 
13 (6) 
0-167 

-7.45 2×10-8 

PIAL 0.18 0.09 1.74 0.09 77 (40) 
0-1133 

20 (14) 
0-433 

-2.26 0.03 

PICO 1.00 1.00 —  — 28189 (9560) 
33-197433 

2790 (663) 
25-14825 

490 7×10-5 

PIEN 0.42 0.30 1.42 0.16 286 (174) 
0-5667 

23 (10) 
0-300 

-8.14 3×10-9 

POTR 0.24 0.36 -1.60 0.12 62 (37) 
0-1200 

384 (164) 
0-4300 

3.16 0.003 

PSME 0.24 0.09 1.86 0.07 31 (13) 
0-267 

10 (8) 
0-267 

-0.22 0.83 

Note: Differences in lodgepole pine density were tested with a two-sided, paired Wilcoxon 
signed rank test (test statistic = V). Presence and density for all other species were tested with 
zero-inflated negative binomial regression models adjusted for matched data (test statistic = t, df 
= n - 1). Abbreviations: ABLA: Subalpine fir, PIAL: Whitebark pine, PICO: Lodgepole pine, 
PIEN: Engelmann spruce, POTR: Quaking aspen, PSME: Douglas-fir. 
 
 
Table D2. Canopy and surface fuel and biomass pools in long- and short-interval plots (n = 22 
each of short and long plots unless otherwise noted); due to time constraints, fuels data were not 
measured in one plot pair and shrubs were not measured in two plot pairs. 

Biomass or fuel characteristic 
Long interval 
Mean (SE) 
Min-Max 

Short interval 
Mean (SE) 
Min-Max 

Test or 
trans. 

Test 
statistic p 

Live tree aboveground (all species) 
10.25 (4.01) 
0-63.64 

1.46 (0.70) 
0-15.32 

— — — 

Canopy fuels (conifers only)      

Available canopy fuel load 
3.57 (1.39) 
0-23.71 

0.52 (0.26) 
0-5.62 

— — — 

Canopy bulk density (kg m-3) 
0.20 (0.10) 
0-2.14 

0.03 (0.01) 
0-0.30 

— — — 

Dead aerial fuels       

1-h snag size class 
— 0.00 (0.00) 

0-0.01 
— — — 

10-h snag size class 
0.01 (0.00) 
0-0.10 

0.29 (0.21) 
0-4.50 

— — — 
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Biomass or fuel characteristic 
Long interval 
Mean (SE) 
Min-Max 

Short interval 
Mean (SE) 
Min-Max 

Test or 
trans. 

Test 
statistic p 

100-h snag size class 
0.41 (0.20) 
0-4.48 

1.98 (0.72) 
0-13.36 

Wilcoxon 48 0.11 

1000-h snag size class 
53.88 (8.41) 
0-133.92 

3.19 (0.98) 
0-18.78 

Cube 
root 

9.81 3×10-9 

Total snag  
54.29 (8.41) 
0-134.16 

5.46 (1.28) 
0-20.45 

Square 
root 

9.03 1×10-8 

Live surface fuels      

Sapling aboveground (lodgepole pine) 
2.40 (1.54) 
0-34.18 

0.19 (0.06) 
0-0.93 

Wilcoxon 214 0.003 

Shrub (n = 20) 
0.08 (0.01) 
0.01-0.22 

0.08 (0.02) 
0-0.46 

Cube 
root 

0.70 0.49 

Dead surface fuels (n = 21)      

Litter 
3.84 (0.80) 
0.03-16.20 

2.62 (0.66) 
0.17-11.41 

Wilcoxon 168 0.07 

Duff 
12.01 (2.46) 
0-45.52 

9.14 (2.54) 
0-45.34 

Wilcoxon 110 0.12 

1-h 
0.16 (0.04) 
0.01-0.72 

0.10 (0.02) 
0-0.34 

Wilcoxon 162 0.11 

10-h 
1.68 (0.26) 
0.09-5.02 

1.37 (0.25) 
0-4.42 

No trans. 0.79 0.44 

100-h 
3.66 (0.52) 
1.00-11.98 

4.86 (0.68) 
1.21-12.79 

Wilcoxon 58 0.08 

Sound 1000-h 
45.86 (7.73) 
5.67-154.30 

32.10 (6.59) 
0-105.30 

Wilcoxon 151 0.23 

Rotten 1000-h 
17.64 (5.53) 
0-95.75 

16.14 (2.92) 
0.31-56.92 

Cube 
root 

-1.29 0.21 

Total live aboveground (tree + sapling + 
shrub) 

12.73 (4.98) 
0.06-91.14 

1.72 (0.73) 
0.02-16.27 

Log10 3.82 0.0005 

Total dead woody (snags + downed 
wood, n = 21) 

121.25 (7.92) 
58.97-203.50 

60.19 (7.80) 
20.15-153.54 

No trans. 7.48 2×10-7 

Note: All loads are in Mg ha-1 unless otherwise noted. Differences between plot pairs were tested 
with one-sided, paired t-tests (total live and total dead, test statistic = t), two-sided paired t-tests 
(test statistic = t, df = n -1), or Wilcoxon signed rank tests (test statistic = V). The Test or 
transformation (trans.) column indicates whether a Wilcoxon test was used or whether a 
transformation was used with a t-test (No trans. = data was not transformed). 
 


