
Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Looking beyond the mean: Drivers of variability in postfire stand
development of conifers in Greater Yellowstone

Kristin H. Braziunasa,⁎, Winslow D. Hansena, Rupert Seidlb, Werner Rammerb, Monica G. Turnera
a Department of Integrative Biology, University of Wisconsin-Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States
b Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Strasse 82, 1190 Wien,
Austria

A R T I C L E I N F O

Keywords:
Stand structure
Variability
Forest development
Process-based modeling
Greater Yellowstone Ecosystem
Wildfire

A B S T R A C T

High-severity, infrequent fires in forests shape landscape mosaics of stand age and structure for decades to
centuries, and forest structure can vary substantially even among same-aged stands. This variability among stand
structures can affect landscape-scale carbon and nitrogen cycling, wildlife habitat availability, and vulnerability
to subsequent disturbances. We used an individual-based forest process model (iLand) to ask: Over 300 years of
postfire stand development, how does variation in early regeneration densities versus abiotic conditions influ-
ence among-stand structural variability for four conifer species widespread in western North America? We
parameterized iLand for lodgepole pine (Pinus contorta var. latifolia), Douglas-fir (Pseudotsuga menziesii var.
glauca), Engelmann spruce (Picea engelmannii), and subalpine fir (Abies lasiocarpa) in Greater Yellowstone (USA).
Simulations were initialized with field data on regeneration following stand-replacing fires, and stand devel-
opment was simulated under historical climatic conditions without further disturbance. Stand structure was
characterized by stand density and basal area. Stands became more similar in structure as time since fire in-
creased. Basal area converged more rapidly among stands than tree density for Douglas-fir and lodgepole pine,
but not for subalpine fir and Engelmann spruce. For all species, regeneration-driven variation in stand density
persisted for at least 99 years postfire, and for lodgepole pine, early regeneration densities dictated among-stand
variation for 217 years. Over time, stands shifted from competition-driven convergence to environment-driven
divergence, in which variability among stands was maintained or increased. The relative importance of drivers
of stand structural variability differed between density and basal area and among species due to differential
species traits, growth rates, and sensitivity to intraspecific competition versus abiotic conditions. Understanding
dynamics of postfire stand development is increasingly important for anticipating future landscape patterns as
fire activity increases.

1. Introduction

Large, high-severity, infrequent disturbances such as fires can shape
landscape patterns of forest age, structure, and species composition for
decades to centuries (Foster et al., 1998). Warming climate and con-
comitant increases in fire activity will likely reset forest succession
across larger expanses of the western United States (Westerling et al.,
2006; Abatzoglou and Williams, 2016; Westerling, 2016). Therefore,
understanding how stands develop after fire is critical for anticipating
future forest landscapes. This is particularly important in the Northern
Rocky Mountains (USA), where decadal area burned increased 889%
from the 1970s to the early 2000s (Westerling, 2016) and 34% of area
burned across all forest types is stand-replacing fire (41% in subalpine
and 25% in mid-montane forests; Harvey et al., 2016a). During large

fire years, stand-replacing fire can exceed 50% of area burned (Turner
et al., 1994). In the Greater Yellowstone Ecosystem (GYE) within the
Northern Rocky Mountains, successional dynamics in subalpine forests
have been influenced by infrequent (100–300 year fire return interval),
high-severity (i.e., stand-replacing) fires throughout the Holocene
(Romme and Despain, 1989; Millspaugh et al., 2004; Schoennagel et al.,
2004; Whitlock et al., 2008; Higuera et al., 2011).

Among-stand variation in forest structure over stand development
has received surprisingly little attention in studies of postfire stand
trajectories (but see Kashian et al., 2005a, 2005b). Structure and
function can vary considerably among stands of the same age (e.g.,
Turner, 2010), with substantial implications for carbon pools and fluxes
(Litton et al., 2004; Turner et al., 2004; Bradford et al., 2008; Kashian
et al., 2013), nitrogen pools and fluxes (Smithwick et al., 2009a, 2009b;
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Turner et al., 2009), wildlife habitat (Tews et al., 2004), and vulner-
ability to subsequent disturbances (Bebi et al., 2003; Seidl et al.,
2016a). Due to high variation in stand structure following fire, simple
descriptions of mean conditions within these forests might overlook
important information about the ecological dynamics of a landscape
(Fraterrigo and Rusak, 2008).

Initially distinct post-disturbance stands may converge over time
due to competition and environmental constraints or follow distinct
trajectories if the effects of initial post-disturbance regeneration and
environmental heterogeneity persist over time (Glenn-Lewin and van
der Maarel, 1992; Walker and del Moral, 2003; Tepley et al., 2013;
Meigs et al., 2017). Postfire stand development pathways differ among
species based on their fire adaptations, tolerances, and growth rates
(Baker, 2009; Knight et al., 2014). For example, species that exhibit
serotiny depend on a canopy seedbank that must be released by an
environmental trigger such as fire (Crossley, 1956). Serotinous species
[e.g., lodgepole pine (Pinus contorta var. latifolia), jack pine (Pinus
banksiana)] can recruit in abundance following stand-replacing fire
(Turner et al., 2004; Buma et al., 2013; Pinno et al., 2013; Edwards
et al., 2015). In the Northern Rocky Mountains, postfire lodgepole pine
densities vary widely as a result of broad-scale gradients in prefire
serotiny (Tinker et al., 1994; Turner et al., 1997; Schoennagel et al.,
2003). In contrast, other species must disperse into recently burned
areas (Baker, 2009). Following severe stand-replacing fire, which kills
all trees and consumes the shallow litter layer, tree seedling establish-
ment occurs on mineral soil (Turner et al., 1997, 1999), and early
seedling survival varies with climate (Harvey et al., 2016b; Stevens-
Rumann et al., 2018).

Variation in early regeneration densities results in differing levels of
competition for light and other resources in postfire stands, which in
turn may differentially affect stand development pathways depending
on species traits. For example, species that are tolerant of resource-
limited conditions [e.g., shade-tolerant subalpine fir (Abies lasiocarpa)
and Engelmann spruce (Picea engelmannii; Oosting and Reed, 1952;
Alexander, 1987)] may continue to establish and survive in the un-
derstory for decades following disturbance (Veblen, 1986; Aplet et al.,
1988), enabling convergence in stand density. Alternatively, species
whose diameter growth rates are more sensitive to competition, such as

lodgepole pine in comparison with other Rocky Mountain conifers
(Buechling et al., 2017), may be likely to tend toward similar basal
areas among stands of different densities. However, high-severity fire
occurs in forests that span a broad range of climatic and topoedaphic
conditions (Turner and Romme, 1994; Harvey et al., 2016a), and this
abiotic heterogeneity may outweigh the effects of competition-driven
convergence and instead maintain or increase variation among stands
during postfire stand development.

Stand development unfolds over long periods of time and under
changing climate, and models that can project variation in future stand
structures are needed to explore these long-term trajectories and inform
possible management practices. Models built on statistical relationships
between environmental drivers and tree responses (i.e., empirical
models) play an important role in forest management and form the
basis for the development of more complex models based on mechan-
istic understanding of forest processes (Korzukhin et al., 1996). How-
ever, empirical models may fail to predict stand structures and forest
landscapes under changing environmental drivers, whereas process-
based models can improve projections of future forest conditions
(Korzukhin et al., 1996; Cuddington et al., 2013; Gustafson, 2013;
Reyer et al., 2015). Modeling ecological processes and variables at
scales appropriate to phenomena, such as competition for resources at
the individual-tree level, also allows broader-scale patterns to emerge
from finer-scale interactions (Grimm et al., 2017; Scholes, 2017).

1.1. Objectives

We adapted and parameterized iLand, a process-based forest simu-
lation model (Seidl et al., 2012) for four widespread conifer species in
the Greater Yellowstone Ecosystem: Lodgepole pine, Douglas-fir
(Pseudotsuga menziesii var. glauca), Engelmann spruce, and subalpine fir.
We then conducted a simulation experiment to address the question:
Over 300 years of postfire stand development, how does variation in
early regeneration densities versus abiotic conditions influence among-
stand structural variability for four conifer species widespread in wes-
tern North America? We expected variation in early regeneration den-
sities to drive structural variability among young stands and variation
in abiotic drivers to become increasingly important as stands aged. We
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Fig. 1. Climate envelope for evaluation and si-
mulation experiments, characterized by mean
annual precipitation and mean annual tempera-
ture (derived from 1980 to 2015 daily climate
data; Thornton et al., 2017) for each species.
Each simulated stand is represented by one point
within this climate space. Median climate con-
ditions used in no among-stand variation sce-
narios (Regeneration varies and Neither vary) are
shown in red. Subalpine fir and Engelmann
spruce have the same median climate.
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further expected early regeneration densities to influence stand struc-
tural variability of lodgepole pine for a longer period of time than other
conifers, due to its wider range of initial stem densities resulting from
variation in prefire serotiny.

2. Methods

2.1. Study area

The Greater Yellowstone Ecosystem in the Northern Rocky
Mountains of the United States comprises 89,000 km2 (YNP, 2017)
primarily in northwest Wyoming, and also in southeast Idaho and
southwest Montana. The majority of the GYE is federally managed land,
anchored by Yellowstone and Grand Teton National Parks and adjacent
national forests, and natural processes such as disturbance and re-
generation occur with minimal intervention across large areas within
this relatively intact forested landscape. Forests in the GYE span a broad
elevation gradient (1800 to 3050m) and include mid-montane forests
at lower elevations dominated by interior Douglas-fir, mid-elevation
subalpine forests dominated by lodgepole pine, and higher-elevation
subalpine forests dominated by Engelmann spruce and subalpine fir
(Despain, 1990; Knight et al., 2014). Climate is warmer and drier at
lower elevations, and cooler and wetter at higher elevations (mean
annual temperatures range from −1.3 to 4.3 °C and mean annual pre-
cipitation from 444 to 1400mm; Fig. 1). Soils in the central area of
Greater Yellowstone are nutrient poor and largely derived from un-
derlying rhyolitic or andesitic bedrock (Despain, 1990; Rodman et al.,
1996). Soil inorganic nitrogen availability is very low, even following

disturbance (Turner et al., 2007), and postfire tree nitrogen uptake is
facilitated by associations with ectomycorrhizal communities (Douglas
et al., 2005; Smithwick et al., 2009a). Rhyolite-derived soils, which
cover most of Yellowstone’s lodgepole pine-dominated central plateau,
are coarser and less fertile than andesite-derived soils (Despain, 1990;
Whitlock, 1993).

Forests in the GYE have been shaped by historical fire regimes
(Romme, 1982). Fire return intervals are longer and percent serotiny of
lodgepole pine is lower at higher elevations (Schoennagel et al., 2003).
Of the four focal species, only mature Douglas-fir with its very thick
bark is adapted to survive fire, and fire regimes in lower-elevation
Douglas-fir forests are typically characterized as mixed severity (Baker,
2009). However, stand-replacing fires can occur in all forest types
(Baker et al., 2007; Harvey et al., 2016a). Postfire regeneration den-
sities following stand-replacing fire are extremely variable (Table 1)
based on prefire stand conditions, local burn severity, and the spatial
pattern of fires, which determine distances to seed sources (Turner
et al., 1997, 1999). For example, regenerating lodgepole pine stands
ranged from 0 to>500,000 stems ha−1 11 years following stand-re-
placing fire (Turner et al., 2004). High-severity fire behavior in this
region is primarily weather-driven (e.g., drought, wind; Schoennagel
et al., 2004; Higuera et al., 2011).

2.2. Simulation model

2.2.1. Model overview
We simulated stand (1 ha) development using the individual-based

forest landscape and disturbance model iLand (Seidl et al., 2012),

Table 1
Initial conditions and drivers for simulated stands. Median values indicate the no among-stand variation condition.

Variable (units)

Douglas-fir
(n=34)

Lodgepole pine
(n=70)

Subalpine fir
(n=38)

Engelmann spruce
(n=39)

Min-Max Mean (SE)
Median

Min-Max Mean (SE)
Median

Min-Max Mean (SE)
Median

Min-Max Mean (SE)
Median

Time since fire (years)* – 24 (–)
24

– 24 (–)
24

10–19 14 (0.4)
13

10–19 14 (0.5)
13

Postfire regeneration*

Density of trees, saplings, and seedlings (stems ha−1) 14–13,653 2224 (490)
1370

33–344,075 21,446 (6546)
4050

14–3154 268 (90)
83

14–11,997 610 (327)
83

Climate†

Mean annual temperature (°C) 1.1–4.3 2.9 (0.1)
3.0

0.0–2.6 1.2 (0.1)
1.1

−1.2–3.1 1.0 (0.2)
0.7

−1.3–3.1 0.8 (0.2)
0.6

Annual precipitation (mm) 444–787 637 (14)
642

629–1400 888 (22)
853

741–981 847 (11)
866

741–981 855 (11)
877

Daily global radiation (MJ m−2) 15.3–18.4 16.4 (0.1)
16.2

16.8–19.8 18.5 (0.1)
18.5

16.7–20.3 18.6 (0.2)
18.6

16.7–20.3 18.7 (0.2)
18.8

Daily vapor pressure deficit (kPa) 0.42–0.51 0.45 (0.00)
0.44

0.40–0.43 0.42 (0.00)
0.42

0.38–0.46 0.42 (0.00)
0.41

0.38–0.46 0.42 (0.00)
0.41

Soils
Effective depth (cm)‡ 83–152 102 (3)

106
83–137 114 (3)

106
83–152 111 (5)

86
83–152 106 (4)

86
Sand (%)‡ 30–71 50 (1)

48
52–56 54 (0)

54
30–56 48 (1)

53
30–56 48 (1)

53
Silt (%)‡ 21–49 33 (1)

33
30–33 32 (0)

33
30–49 35 (1)

32
30–49 35 (1)

32
Clay (%)‡ 8–22 17 (1)

19
13–15 14 (0)

14
13–21 17 (1)

15
13–21 17 (1)

15
Substrate§ – Andesite – Rhyolite – Andesite – Andesite

* Postfire regeneration densities and time since fire from field data (Donato et al., 2016; Harvey et al., 2016b; Turner et al., 2016).
† Climate data from Daymet Version 3 (Thornton et al., 2017), extracted using geographic coordinates of field data* or field-verified forest type (Simard et al.,

2012).
‡ Soil depth and texture from CONUS-SOIL (Miller and White, 1998), extracted using geographic coordinates of field data* or field-verified forest type (Simard

et al., 2012).
§ Soil substrate assigned based on parent material associated with each forest type (Despain, 1990; Knight et al., 2014). Substrate was used to derive relative

fertility.
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which integrates species-specific responses to environmental drivers
such as light availability, temperature, precipitation, soil moisture, and
nutrient levels. These environmental drivers limit seedling cohort es-
tablishment and modify sapling cohort growth and survival. Trees >
4m in height are represented as individuals (2-m spatial resolution) in
their responses to resource availability. Limitations to physiological
processes (e.g., temperature and water limitation) are considered at a
daily time step, and stand structure is updated annually. Nutrient levels
(i.e., soil relative fertility) are expressed as plant available nitrogen and

modify tree growth according to a species-specific nitrogen response
class. Processes such as seed dispersal and competition for light are
spatially explicit. Light availability for an individual tree is attenuated
based on the heights and crown characteristics of neighboring trees.
The growth allocation of individual trees to height and diameter re-
sponds dynamically to light competition within a species-specific range.
In the absence of disturbance, variation in tree sizes and forest structure
within stands (i.e., 100× 100m grid cells of homogeneous climate and
soil conditions) emerges from these fine-scale tree-level dynamics,

Fig. 2. (Inset) Location of our study area within North America. (Main) Plot locations (Simard et al., 2012; Donato et al., 2016; Harvey et al., 2016b; Turner et al.,
2016) within the Greater Yellowstone Ecosystem used for data on postfire regeneration, climate, and soils to simulate stand development in iLand. Fire years for
postfire regeneration plots are indicated with differential shading, and additional climate and soil plots were identified to better encompass the expected range of
variability in abiotic conditions for each species. Data sources: ESRI, Tele Atlas, National Atlas of the United States, YNP Spatial Analysis Center, and Monitoring
Trends in Burn Severity (MTBS).
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while among-stand variability is also driven by differences in environ-
mental conditions between stands (Seidl et al., 2012). iLand has been
demonstrated to work well in forested ecosystems in the Pacific
Northwest (Seidl et al., 2012, 2014b) and in Europe (Seidl et al., 2014a;
Silva Pedro et al., 2015; Thom et al., 2017), and Hansen et al. (2018)
evaluated iLand’s representation of early postfire regeneration dy-
namics in lodgepole pine and Douglas-fir forests in Yellowstone. Ex-
tensive model documentation is available at http://iland.boku.ac.at/
(Seidl and Rammer, 2018).

2.2.2. Model parameterization
We parameterized iLand for the four dominant conifer species in the

Greater Yellowstone Ecosystem (Appendix A). Most species-specific
traits and parameters were sourced from peer-reviewed literature and
government reports, and a few parameters (e.g., height-to-diameter
ratios, aging) were fit or iteratively derived by simulating stand de-
velopment of initial conditions (see Seidl et al., 2012; Seidl and
Rammer, 2018).

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.foreco.2018.08.034.

2.2.3. Model evaluation
Because iLand had not previously been used for our focal species in

the Greater Yellowstone Ecosystem, we undertook a three-stage eva-
luation of iLand to assess the model’s ability to simulate stand structural
development in the region, including single-species, mixed-species, and
model comparison assessments (Appendix B). The model appropriately
characterized monospecific stand structural trajectories and variability,
encompassing a majority of independent field observations over
300 years of stand development (Figs. B.1 and B.2); reproduced ex-
pected successional trajectories from bare ground to Douglas-fir, lod-
gepole pine, and spruce-fir forest types given appropriate seed source
species composition and abiotic conditions (Fig. B.5); and responded
consistently to variation in initial stem densities and environmental
conditions with the forest growth model Forest Vegetation Simulator
(FVS; Dixon, 2002; Crookston and Dixon, 2005) for at least 50 years of
simulation (Figs. B.9–B.11). Overall, iLand performed well across
multiple evaluations, supporting its use in studying the relative im-
portance of factors influencing among-stand structural variability over
hundreds of years of stand development in the Greater Yellowstone
Ecosystem.

2.3. Initial conditions and drivers

We initialized model simulations using species-specific field data
recorded in previously published studies of postfire regeneration fol-
lowing stand-replacing fires in the GYE (Table 1, Fig. 2; Donato et al.,
2016; Harvey et al., 2016b; Turner et al., 2016). Individual trees
(densities, diameters, and heights) and the number and height of sap-
ling and seedling cohorts were initialized for each simulated 1-ha stand.
Because our interest here was in long-term stand development once
early postfire establishment had occurred, we began simulations with
stands that were 10–25 years postfire (but see Hansen et al., 2018 for
simulations of early postfire establishment).

For each postfire stand from the same published studies, we ex-
tracted daily historical (1980–2015) climate drivers (temperature,
vapor pressure deficit, precipitation, and radiation) from Daymet
Version 3 (Thornton et al., 2017) and soil depth and texture from
CONUS-SOIL (Miller and White, 1998) using geographic coordinates of
plot centers (Fig. 2). Available field plots for lodgepole pine regenera-
tion were widely distributed across Yellowstone National Park. How-
ever, some field plots for Douglas-fir, Engelmann spruce, and subalpine
fir stands were in close proximity, resulting in replicated climate con-
ditions, and higher-elevation Engelmann spruce-subalpine fir climates
were underrepresented. To adequately simulate expected ranges of
abiotic variability for each species, we extracted additional climate and

soil conditions in the GYE based on field-verified forest type (see Figs. 1
and 2; Simard et al., 2012). Soil relative fertility was held constant by
species to control for inconsistent field data on soil substrate, and si-
mulated stands were assigned a fertility value based on associations
between species and soil parent material in this region (i.e., rhyolite
parent material for lodgepole pine and andesite parent material for
Douglas-fir, Engelmann spruce, and subalpine fir; Despain, 1990;
Knight et al., 2014).

Initial conditions and drivers represented a wide range of early re-
generation densities and abiotic conditions for each species (Table 1,
Fig. 1). Initial stem densities varied by at least two and up to four orders
of magnitude. All species spanned a range of at least 2.5 °C mean annual
temperature, 240mm mean annual precipitation, and 50 cm effective
soil depth. Mean annual temperature and precipitation ranges in our
climate data were also representative of the longer-term (starting as
early as 1881 through 2012) historical climate record from weather
stations throughout the GYE (WRCC, 2018).

2.4. Simulation experiment

We conducted a 2-by-2 factorial simulation experiment to assess the
influence of two distinct drivers of among-stand structural variability,
early regeneration densities or abiotic (climate plus soil depth and
texture) conditions. All stands were either simulated with observed
variation in postfire regeneration and abiotic conditions or with no
among-stand variation, resulting in four scenarios (Both vary, Abiotic
varies, Regeneration varies, Neither varies). A representative abiotic and
early regeneration stand was derived for each species based on the
central tendency of observed drivers (i.e., median soil depth and tex-
ture, climate period with median vapor pressure deficit, stand with
median postfire regeneration stem density; Table 1, Fig. 1). For sce-
narios with no among-stand variation in abiotic conditions or in early
regeneration, the respective representative stand conditions were as-
signed to all simulated stands for a given species. Abiotic conditions
were randomly assigned to early postfire regeneration densities by
species in the Both vary scenario.

For each scenario, we simulated postfire development of mono-
specific 1-ha stands for 300 years with no additional disturbance under
historical climate conditions (n=20 replicates per scenario). Climate
year was randomly drawn with replacement from 1980 to 2015. Initial
trees and saplings within a stand were the only seed source for sub-
sequent tree recruitment.

2.5. Model outputs and analysis

Stand structure for each species was characterized using two me-
trics, stand density and stand basal area. Both metrics were calculated
each year for trees > 4m in height. The coefficient of variation (CV)
was used to quantify variation in structure among stands of the same
species and age (as in Kashian et al., 2005a, 2005b). As a relative es-
timate of variance, the CV enables comparisons among datasets with
different means (Fraterrigo and Rusak, 2008). Because the coefficient of
variation can be sensitive to low mean values, CVs were only calculated
when mean stand density was≥ 50 trees ha−1 and mean basal area
was≥ 2m2 ha−1 (5% of approximate stand density and basal area of a
mature stand).

For each species and scenario, mean stand density, mean stand basal
area, and mean CV (among the n=20 replicates) were calculated for
each year. We first assessed differences in stand structure convergence
among species in the Both vary scenarios, in which both abiotic con-
ditions and early regeneration densities varied among stands, based on
when CV declined below 50% and when mean stand density peaked.
Past studies in this region have documented convergence at CVs slightly
below 50% (Kashian et al., 2005b). We next assessed similarities and
differences among the four scenarios for each species. For Abiotic varies
and Regeneration varies scenarios, we characterized time periods at
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Fig. 3. (a-h) Mean stand density and mean among-stand density CV for the four simulation scenarios over 300 years of postfire stand development (n=20 replicates
of each). All metrics are for trees > 4m in height. All vertical axes are on a log10 scale to facilitate comparison over time and among simulations. Convergence to
CV=50% is indicated by a dashed black line.
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Fig. 4. (a–h) Mean stand basal area and mean among-stand basal area CV for the four simulation scenarios over 300 years of postfire stand development (n=20
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Fig. 5. (a–h) Ranges of CVs (min to max) across n=20 replicates each of Abiotic varies and Regeneration varies scenarios. (i–j) Timeline plot for all four species,
showing time since fire years when Regeneration CVs > Abiotic CVs (red), years when Regeneration and Abiotic CV ranges overlapped (purple), and years when Abiotic
CVs > Regeneration CVs (blue). The range of Regeneration varies and Abiotic varies overlap encompasses the first to last point of overlap, and in some cases includes
non-overlapping years. Points indicate the point of intersection of the mean trajectories for each species. Psme=Douglas-fir, Pico= lodgepole pine,
Abla= subalpine fir, and Pien=Engelmann spruce.
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which abiotic drivers versus early regeneration densities were more
important in influencing among-stand variation using the point of in-
tersection of mean CVs and the overlap of CV ranges (minimum to
maximum CV across the 20 replicates). Trends among species were
compared based on time since fire in years. R statistical software (R
Core Team, 2017) was used for all analyses of model outputs.

3. Results

3.1. Variation and convergence in among-stand structural trajectories (Both
vary scenario)

When stands varied both in their early postfire densities and their
abiotic conditions (Both vary scenario), among-stand CVs for stand
density and basal area were highest at or near the beginning of the
simulation. Stands eventually converged in density (Fig. 3) and in basal
area (Fig. 4), but the timing of convergence differed among species.
Stand density converged most rapidly for lodgepole pine (mean among-
stand density CV declined below 50% by 83 years postfire), followed by
subalpine fir (105 years), Engelmann spruce (106 years), and Douglas-
fir (143 years; Fig. 3). Mean stand density (trees > 4m height) peaked
earlier in stand development for both Douglas-fir (468 trees ha−1 at
37 years postfire) and lodgepole pine (2960 trees ha−1 at 31 years
postfire) compared to subalpine fir and Engelmann spruce
(817 trees ha−1 and 1005 trees ha−1 at 149 and 143 years postfire, re-
spectively). At peak stand density, among-stand variation was greater
for Douglas-fir and lodgepole pine (mean CV=108% for Douglas-fir
and 112% for lodgepole pine) than for subalpine fir (mean CV=32%)
or Engelmann spruce (mean CV=24%). By 300 years postfire, among-
stand variability in density had declined to≤ 45% mean CV for all
species.

Basal area converged more rapidly than stand density for Douglas-
fir and lodgepole pine, with mean among-stand basal area CV falling
below 50% by 58 and 34 years postfire, respectively (Fig. 4). However,
basal area and stand density converged at similar times for subalpine fir
and Engelmann spruce (mean CV declined below 50% by 111 and
107 years postfire, respectively). By 300 years postfire, among-stand
variability in basal area had declined to a mean CV of≤ 23% for all
species.

3.2. Influence of early regeneration densities versus abiotic conditions on
stand structural variability (among-scenario comparisons)

Trajectories of mean tree density were similar over time across the
four scenarios (Fig. 3a-d), but trajectories of among-stand variation in
density differed among scenarios and species (Fig. 3e-h). Early in stand
development, mean CVs for stand density were similar when early re-
generation densities and abiotic conditions both varied (Both vary) and
when only regeneration densities varied (Regeneration varies), but mean
CVs were much lower when only abiotic conditions varied (Abiotic
varies). When only early regeneration densities varied, mean CVs de-
clined over time as stand density converged, eventually reaching a
value lower than the Both vary scenario. In contrast, when only abiotic
conditions varied, mean CVs were initially lower but declined less ra-
pidly and in some cases increased over time. By 300 years postfire,
Abiotic varies and Both vary scenarios had similar mean CVs, both of
which were greater than mean CVs for Regeneration varies.

For all species, early regeneration densities were the most important
driver of among-stand variation in density early in stand development
(when Regeneration varies scenarios had the highest mean CV), and
abiotic drivers were most important later in stand development (when
Abiotic varies scenarios had the highest mean CV). However, species
differed in both the postfire year at which the most important driver
switched from early regeneration densities to abiotic conditions (point
of intersection between Regeneration varies and Abiotic varies scenarios
in Fig. 5i-j) and in the time period during which both drivers similarly

influenced among-stand variation (overlap in CV ranges across all
n=20 replicates per scenario; Fig. 5).

Variation in early postfire regeneration influenced among-stand
variability in lodgepole pine density for a longer period of time than
other species. Lodgepole pine Abiotic and Regeneration varies scenarios
intersected at 217 years postfire (Fig. 5c). The point of intersection was
earliest for subalpine fir stands (99 years postfire; Fig. 5e), followed by
Engelmann spruce (149 years postfire; Fig. 5g) and Douglas-fir
(174 years postfire; Fig. 5a).

Mean basal area also followed similar trajectories among all four
scenarios (Fig. 4a-d), whereas among-stand variation in basal area
differed among scenarios and species (Fig. 4e-h). In general, mean
among-stand basal area variability behaved similarly to mean among-
stand density variability over time for each of the four scenarios.
Among-stand variation was initially high when only early regeneration
densities varied (Regeneration varies) or when both regeneration and
abiotic conditions varied (Both vary), but mean CV declined over time.
When only abiotic conditions varied (Abiotic varies), among-stand var-
iation was initially lower. However, the Abiotic varies mean CV equaled
(point of intersection) and then surpassed the Regeneration varies mean
CV over time.

The relative importance of abiotic conditions versus early re-
generation densities as drivers of among-stand structural variability
differed between basal area and density for a given species. For ex-
ample, the point of intersection of mean CVs in Abiotic and Regeneration
varies scenarios was earlier for basal area compared to stand density for
all species except subalpine fir (Fig. 5i-j). Lodgepole pine had the ear-
liest point of intersection (67 years postfire; Fig. 5d), and mean CVs for
subalpine fir (Fig. 5f), Douglas-fir (Fig. 5b), and Engelmann spruce
(Fig. 5h) intersected at similar times in stand development (125, 129,
and 136 years postfire, respectively). For all species other than Douglas-
fir, the overlap in CV ranges between Abiotic and Regeneration varies
scenarios ended earlier compared to density (Fig. 5i-j). The ranges of
Douglas-fir basal area CVs overlapped until the end of the simulation
(300 years postfire).

4. Discussion

Here we show that variation in early postfire regeneration densities
affects stand structural trajectories for decades to centuries for four
widespread conifer species. Variation in early regeneration densities
was particularly important in shaping long-term patterns of lodgepole
pine stand densities. Among-stand structural variability was highest in
young stands for all species, and stand structures converged with time
since fire. Basal area converged more rapidly than stand density for
Douglas-fir and lodgepole pine, but not for subalpine fir and Engelmann
spruce. Differential responses among species correspond to variation in
life history traits, growth rates, and sensitivity to intraspecific compe-
tition versus abiotic conditions. This study highlights the importance of
understanding variability in early postfire regeneration and in young
stand structures to anticipate future landscape patterns in ecosystems
characterized by high-severity, infrequent disturbance regimes.

4.1. Variation and convergence in among-stand structural trajectories

Convergence of simulated stand density when both abiotic condi-
tions and early regeneration varied (Both vary scenarios) is consistent
with postfire chronosequence studies in this region (Kashian et al.,
2005a, 2005b). Convergence occurs when initially dense stands un-
dergo self-thinning as individual trees outcompete their neighbors
(Peet, 1992), while establishment continues in sparser stands where
light is available at the forest floor (Kashian et al., 2005b; Turner et al.,
2016). Simultaneous self-thinning in some stands and infilling in others
was evident early in simulations of both lodgepole pine and Douglas-fir.
In field chronosequences, rapid declines in stand density (until 50 or
100 years postfire) and convergence have also been documented
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(Kashian et al., 2005b). In contrast, prolonged time to convergence and
self-thinning in simulated subalpine fir and Engelmann spruce stands
may be related to slower initial growth of these species during seedling
and sapling stages, as well as alleviated light competition due to smaller
initial stem numbers and narrower crowns (Oosting and Reed, 1952;
LeBarron and Jemison, 1953; Alexander, 1987; Purves et al., 2007).

Past studies of lodgepole pine stand development in the GYE in-
dicate that basal area increment converges more rapidly than stem
density (Kashian et al., 2005b), but this was not observed for all species
in our simulations. Lodgepole pine trees in sparser stands can exhibit a
compensatory growth response to lower densities (e.g., Copenhaver and
Tinker, 2014) and therefore tend toward similar basal area as denser
stands. However, continued establishment and growth of the more
shade-tolerant subalpine fir and Engelmann spruce under low light
conditions may enable convergence in stand density and basal area
simultaneously.

4.2. Influence of early regeneration densities versus abiotic conditions on
stand structural variability

Variation in early postfire regeneration densities was the most im-
portant driver of stand structural variability for at least 99 and up to
217 years, depending on the species. Over time, stands shifted from
competition-driven convergence to environment-driven divergence, in
which variability among stands was maintained or increased. This
supports our expectation that variation in regeneration densities would
drive variability among young stands, with variation in abiotic drivers
becoming increasingly important as stands aged. As stands continue to
age, it is also possible that processes such as mortality of trees from the
first wave of postfire regeneration and continued infilling will con-
tribute to homogenization of stand structures across different abiotic
conditions later in stand development (as may be the case with sub-
alpine fir and lodgepole pine in Fig. 3f,g). However, the long-lasting
influence of early postfire regeneration is striking given the wide range
of abiotic conditions. As fire frequency is likely to increase in the future
(Westerling et al., 2011), the influence of variation in tree regeneration
is also likely to increase relative to the effect of abiotic variation.

Our expectation that regeneration would influence stand structural
variability of lodgepole pine for a longer period of time than other
conifers was supported for density, highlighting the importance of
species life history traits. Traits that favor abundant and rapid initial
regeneration after fire, such as high prefire serotiny in lodgepole pine
and rapid abscission schedule (e.g., jack pine; Greene et al., 2013), can
have long-lasting effects on stand densities (Mason, 1915; Kashian
et al., 2005b). Lodgepole pine also regenerates non-serotinously, but
shading from an initial cohort may suppress subsequent regeneration
and seedling growth (Lotan and Perry, 1983; Knight et al., 2014). Given
smaller ranges of early postfire densities and prolonged periods of es-
tablishment and growth in the understory, species such as subalpine fir
and Engelmann spruce may more rapidly overcome initial variation in
regeneration. Of the three solely wind-dispersed species, subalpine fir is
generally characterized as the most shade-tolerant and as a relatively
prolific and regular seeder (Oosting and Reed, 1952; Alexander, 1987).
Consistent with these traits, variation in early regeneration densities
had the shortest influence on subalpine fir stand densities compared to
Douglas-fir and Engelmann spruce.

In contrast, our expectation that regeneration would have a pro-
longed influence on lodgepole pine compared to other species was not
supported for among-stand basal area. Differential growth rates and
their sensitivity to environmental drivers and competition may explain
differences among species. Lodgepole pine is relatively faster growing
at young ages and radial growth increment is highly sensitive to
crowding (Wykoff, 1990; Veblen et al., 1991; Buechling et al., 2017),
resulting in accelerated growth of individual trees in sparser stands
(Copenhaver and Tinker, 2014). Tree growth may also be enhanced
given moderate annual precipitation (in the range of 600 to

900mm yr−1; Buechling et al., 2017), and growing conditions are more
limited at the upper (shorter growing season) and lower (drier) treeline
(Knight et al., 2014). Among the four species, Douglas-fir radial growth
increment is least sensitive to crowding (Buechling et al., 2017), po-
tentially maintaining variability in stand basal area due to early re-
generation densities for a longer period of time than in other species.

4.3. Implications and limitations of our model-based approach

Modeling studies can inform management decisions by serving as a
benchmark of the historical range of ecosystem responses to drivers that
are expected to change in the future (Seidl et al., 2016b). For example,
the results of this study could be used to evaluate whether the relative
importance of the abiotic template in influencing stand structural
variability increases in scenarios of future interannual climate varia-
bility. This, in turn, may indicate whether forests are likely to be
characterized by divergent stand structural trajectories under changing
climate as well as changing fire regimes. Process-based models that
integrate emergent, fine-scale responses to environmental drivers are
particularly well suited to explore long-term landscape trajectories
under no-analog conditions (Cuddington et al., 2013; Gustafson, 2013;
Grimm et al., 2017). These models are powerful tools for characterizing
ecosystem patterns and processes, generating new or improved under-
standing of underlying mechanisms, and facilitating a synthetic ap-
proach with field-based experiments to understanding complex systems
(Jenerette and Shen, 2012; Bowman et al., 2015; Cottingham et al.,
2017; Grimm et al., 2017; Rastetter, 2017; Seidl, 2017). Future studies
could employ process-based models to disentangle the relative influ-
ence of individual abiotic drivers.

For simulating variability in ecosystems, it must be noted that
models are still likely to underestimate real-world environmental var-
iation. Stand structural variability is probably higher among real stands
compared to our simulations, which did not include covariation be-
tween high regeneration densities and favorable abiotic conditions
(Schoennagel et al., 2003; Turner et al., 2004; Donato et al., 2016;
Harvey et al., 2016b; Stevens-Rumann et al., 2018), subsequent dis-
turbances (e.g., insect outbreaks; Antos and Parish, 2002), interspecific
interactions, and seed supply from neighboring stands. In addition,
stands may reburn prior to the 300 years of stand development simu-
lated in this study. Historically, extensive portions of reburned forest in
Yellowstone were at least 300 years old (Romme and Despain, 1989),
and higher-elevation (> 2400m) forests were characterized by ap-
proximately 300-year fire return intervals (Schoennagel et al., 2003).
However, as warming climate continues to drive increasing fire activity
(Westerling et al., 2006, 2011; Abatzoglou and Williams, 2016;
Westerling, 2016), it is increasingly likely that younger stands will re-
burn.

4.4. Variability is important for anticipating forest landscape structure and
function

Variability characterizes many post-disturbance systems (e.g.,
Kashian et al., 2005b; Suzuki et al., 2009) and has substantial im-
plications for future forests, but remains understudied (Fraterrigo and
Rusak, 2008). Assumptions that all stands have the same value of
aboveground carbon storage may be inappropriate with increasing fire
activity and therefore increasing extent of young, structurally variable
forest (Kashian et al., 2006, 2013). When variability is high, mean es-
timates of stand structure may be increasingly inaccurate predictors of
ecosystem patterns and processes (Cottingham et al., 2000; Fraterrigo
and Rusak, 2008), particularly if relationships between drivers and
responses are nonlinear and interact across scales (Lovett et al., 2005;
Peters et al., 2007). Increased forest landscape heterogeneity could also
dampen the spread or severity of future disturbances (Bebi et al., 2003;
Kulakowski and Veblen, 2007; Seidl et al., 2016a).

For forests adapted to high-severity, infrequent fire regimes,
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understanding causes and patterns of variation in early postfire re-
generation appears critically important for anticipating long-term
landscape variability. Early postfire regeneration (within the first two
decades) affected structural trajectories of four widespread conifer
species for decades to centuries in stands across a wide gradient of
environmental conditions. Regeneration processes, such as seed supply,
dispersal, establishment, and early seedling survival, are often highly
sensitive to changes in disturbance regimes and environmental fluc-
tuations (Kipfmueller and Kupfer, 2005; Larson and Kipfmueller, 2010;
Harvey et al., 2016b; Kemp et al., 2016; Hansen et al., 2018; Stevens-
Rumann et al., 2018). Early regeneration densities may forecast long-
term trajectories in ecosystems that experience periodic high-severity
disturbances (Turner et al., 1998), although it may be necessary to
consider more than just the first few years of establishment (e.g.,
Peterson and Pickett, 1995; Gill et al., 2017). Ongoing research on the
effects of changing climate, disturbance regimes, and other drivers of
variation in early postfire regeneration is needed to anticipate future
forest landscape patterns.
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Appendices 

 

Looking beyond the mean: 

Drivers of variability in postfire stand development of conifers in Greater Yellowstone 

Kristin H. Braziunas, Winslow D. Hansen, Rupert Seidl, Werner Rammer, and Monica G. Turner 

 

Appendix A. Parameters 

We parameterized iLand for four widespread conifer species in the Greater Yellowstone 

Ecosystem (GYE): Lodgepole pine (Pinus contorta var. latifolia), Douglas-fir (Pseudotsuga 

menziesii var. glauca), Engelmann spruce (Picea engelmannii), and subalpine fir (Abies 

lasiocarpa). The majority of species-specific parameters were sourced from peer-reviewed 

literature and government reports. A few parameters (e.g., height-to-diameter ratios, aging) were 

fit or iteratively derived by simulating stand development of initial conditions (see Seidl et al., 

2012 and Seidl and Rammer, 2018). Species parameters are reported in Table A.1. Regional, 

non-species-specific model parameters for the GYE, such as atmospheric CO2 concentration, are 

reported in Table A.2. Extensive model documentation and parameter descriptions are available 

at http://iland.boku.ac.at/, and a sensitivity analysis of species parameters was performed by 

Seidl et al. (2012). 

Some lodgepole pine trees produce serotinous cones (closed cones that retain seeds and 

only open in response to elevated temperatures, such as those experienced during fire), while 

others only produce cones that are non-serotinous and open at maturity (Tinker et al., 1994). To 

capture the resulting differences in postfire regeneration, serotinous and non-serotinous 
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lodgepole pine were simulated as two separate “species,” and parameters for serotinous 

lodgepole pine were derived by Hansen et al. (2018). 
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Table A.1. Species-specific parameters for conifers in the Greater Yellowstone Ecosystem. Abla 

= Abies lasiocarpa, Pico = Pinus contorta var. latifolia (non-serotinous), PicS = Pinus contorta 

var. latifolia (serotinous), Pien = Picea engelmannii, and Psme = Pseudotsuga menziesii var. 

glauca, dim = dimensionless, exp = expression, sdlings = seedlings. Parameters are fully 

described in Seidl and Rammer (2018). 

Parameter  Unit Source Abla Pico PicS Pien Psme 
Tree growth         
Specific leaf area m2 kg-1 1–4 4.4 4.6 4.6 5.0 5.8 
Leaf turnover year-1 5,6 0.14 0.33 0.33 0.17 0.20 
Root turnover year-1 3 0.33 0.33 0.33 0.33 0.33 
Height to diameter low a dim 6–12,71 33.80 38.51 38.51 29.79 44.37 
Height to diameter low b dim 6–12,71 -0.101 -0.126 -0.126 -0.0752 -0.131 
Height to diameter high a dim 6–12,71  169.39 287.99 287.99 188.96 439.47 
Height to diameter high b dim 6–12,71 -0.249 -0.288 -0.288 -0.245 -0.476 
Wood density kg m-3 6 309 380 380 330 450 
Form factor dim[0,1] 13–16 0.466 0.470 0.470 0.469 0.453 
 
Biomass allocation        

Stem wood biomass a * 17–21 0.04687 0.1401 0.1401 0.2462 0.04510 
Stem wood biomass b * 17–21 2.527 2.136 2.136 2.049 2.634 
Stem foliage biomass a * 19,21–23 0.3894 0.02723 0.02723 0.02860 0.3021 
Stem foliage biomass b * 19,21–23 1.231 1.882 1.882 2.010 1.308 
Root biomass a * 10,24 0.02327 0.021 0.021 0.01135 0.02002 
Root biomass b * 10,24 2.313 2.281 2.281 2.522 2.450 
Branch biomass a * 19,21–23 0.1926 0.01903 0.01903 0.05266 0.2624 
Branch biomass b * 19,21–23 1.571 2.120 2.120 2.060 1.546 
 
Mortality        

Probability of survival to 
max age (intrinsic 
mortality) 

dim[0,1] 25,71 0.10 0.10 0.10 0.10 0.20 

Stress-related mortality  dim 3,71 1.0 1.0 1.0 1.0 1.0 
 
Aging        

Max age years 26–28,71 300 500 500 600 400 
Max height m 26,27,29 42 41 41 55 57 
Aging a dim 30,71 0.75 0.50 0.50 0.75 0.60 
Aging b dim 30,71 2.50 2.50 2.50 2.50 4.50 
 
Environmental responses       

Vapor pressure deficit 
response dim 3 -0.65 -0.65 -0.65 -0.65 -0.65 

Min temperature °C 3,31–
34,71 -4.0 -6.0 -6.0 -6.0 -6.0 
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Table A.1, cont. 
 

       

Parameter  Unit Source Abla Pico PicS Pien Psme 
Environmental responses (cont.)       

Optimum temperature °C 3,31–
34,71 19.0 17.0 17.0 17.0 17.0 

Nitrogen class dim[1,3] 35,36,71 2.5 1.0 1.0 2.5 1.5 
Phenology int[0,2] 29 0 0 0 0 0 
Max canopy conductance m s-1 3 0.017 0.017 0.017 0.017 0.017 

Min soil water potential MPa 27,37,38,
71 -1.91 -2.0 -2.0 -1.78 -2.40 

Light response dim[1,5] 27,71 4.5 2.0 2.0 4.0 2.5 
Fine root to foliage ratio dim[0,1] 39,71 0.75 0.75 0.75 0.75 0.75 
 
Seed production and dispersal       

Cone bearing age years 26,27,29,
40,71 25 15 15 25 55 

Seed year interval years 26,29, 
41–47,71 4 1 1 5 5 

Non-seed year fraction dim[0,1] 26,29, 
41–47,71 0.25 0 0 0.1 0.24 

Seed mass mg 29,33,42 13.03 4.1 4.1 3.37 11.31 
Germination rate dim[0,1] 47–52,71 0.229 0.36 0.36 0.114 0.30 
Fecundity sdlings m-2  51,53,71 30.0 115.9 115.9 42.8 43.9 
Seed kernel a m 29,54–58 19 6 6 19 30 
Seed kernel b m 29,54–58 110 160 160 110 200 
Seed kernel c dim[0,1] 29,54–58 0.2 0.05 0.05 0.2 0.2 
 
Establishment        

Min temperature °C 59 -67 -85 -85 -45 -37 
Chill requirement days 59 60 63 63 49 56 
Min growing degree days degree days 59 198 186 186 74 340 
Max growing degree days degree days 59 5444 3374 3374 1911 3261 
Growing degree days 
base temperature °C 59 2.6 2.9 2.9 3.1 3.4 

Growing degree days 
before bud burst degree days 59 119 116 116 145 255 

Frost free days days 59 95 80 80 30 100 
Frost tolerance dim[0,1] 59 0.9 0.9 0.9 0.9 0.5 

Min soil water potential MPa 55,60,61,
71 -2.5 -2.3 -2.3 -2 -7 

 
Sapling growth        

Sapling growth a dim 6–12, 
62–69 0.029 0.05 0.05 0.020 0.036 

Sapling growth b m 6–12,27, 
62–69 38 24 24 55 47 

Max stress years years 39,71 2 2 2 2 3 
Stress threshold dim[0,1] 39,71 0.2 0.2 0.2 0.1 0.05 
Height to diameter ratio dim 6,8,11,12 75 72 72 72 88 

Reineke’s R saplings ha-1 6,8,11,12,
39,55,71 350 14.33 550 400 500 

Reference ratio dim[0,1] 71 0.345 0.457 0.457 0.409 0.451 
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Table A.1, cont. 
 

       

Parameter  Unit Source Abla Pico PicS Pien Psme 
Serotiny        

Serotiny formula exp 8   (x,20,0, 
80,1)   

Serotiny fecundity dim 8   30   
        
Crown parameters for light influence patterns      
Crown shape coefficient dim 70 0.2530 0.2700 0.2700 0.2615 0.3015 
Max crown radius a m 70 0.9778 1.1194 1.1194 1.0486 1.3817 
Max crown radius b m 70 2.2195 2.7325 2.7325 2.4760 3.6825 
Relative crown height dim[0,1] 27,39,70 0.5450 0.3065 0.3065 0.4190 0.4356 

* Used in allometric equation to calculate biomass (kg) from diameter at breast height (cm). 
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Table A.2. Regional model parameters for the Greater Yellowstone Ecosystem, which apply to 

all stands in the simulation. Parameters from Seidl et al. (2012) were used or modified for this 

study. Additional regional parameters were set to default values per Seidl and Rammer (2018). 

Parameter  Units Value 
Light extinction coefficient dim 0.5 
Potential light utilization efficiency g C MJ-1 2.9 
Boundary layer conductance mm s-1 0.15 
Temperature delay time constant days 6.0 
Base CO2 concentration ppm 330 
Latitude °N 44.5 
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 Appendix B. Model evaluation 

 We evaluated iLand’s ability to simulate stand structural development under historical 

climatic conditions in the Greater Yellowstone Ecosystem (GYE) in three stages: Evaluation of 

monospecific stands, evaluation of succession in mixed-species stands, and comparison with the 

forest growth model Forest Vegetation Simulator (FVS; Dixon, 2002). Evaluations were 

designed to assess how well iLand characterized (1) single-species stand structural trajectories 

and variability over time, (2) successional trajectories, species composition, and stand structure 

in late-seral stages in different forest types, and (3) responses to variation in initial stem densities 

and environmental conditions. Comparison of stand development with FVS allowed us to 

evaluate iLand against the simulator used most widely by federal forest managers in the western 

United States. 

 

1. Single-species evaluation 

We first evaluated monospecific stand structural trajectories and variability over time for 

each of the four dominant conifer species. Derivation of initial conditions and drivers followed 

the methods described in the main body of the paper, except that we varied soil fertility among 

stands when field data was available (i.e., for Douglas-fir and lodgepole pine; Donato et al., 

2016; Turner et al., 2016). For these stands, relative soil fertility was assigned based on the 

recorded parent material (andesite, rhyolite, or lacustrine sediments; Despain, 1990; Knight et 

al., 2014). We simulated development of monospecific 1-ha stands for 300 years with no 

additional disturbance under historical climate conditions. Climate year was randomly drawn 

with replacement from 1980 to 2015.  
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We evaluated how well the model simulated variation in stand development by 

comparing stand-level live tree densities, basal areas, quadratic mean diameters (QMDs), and 

mean heights with independent field observations (Kashian et al., 2005a; Simard et al., 2011; 

Donato et al., 2013a; Griffin et al., 2013; Kashian et al., 2013) and data from the Forest 

Inventory and Analysis (FIA) Database (USDA Forest Service, 2016). Field observations 

included stands dominated by lodgepole pine or Douglas-fir that were either undisturbed or had 

recently experienced bark beetle disturbance (red stage). In the latter, standing dead trees were 

treated as live trees for the purpose of comparison. The FIA stands for Douglas-fir, Engelmann 

spruce, and subalpine fir were selected from unreplicated (inventory year 2000) stands on 

federally owned land and dominated (> 75% of tree density) by the focal species. All stand ages 

in comparison data were plotted as time since stand-replacing fire. For consistency with field 

data, metrics of stand structure were calculated for trees > 4 cm diameter at breast height (DBH). 

Simulated stand densities in iLand for all four species fell within observed ranges of field 

data over 300 years of stand development, and variation in stand density and basal area 

corresponded well to observations over time since fire (Fig. B.1). At 300 years postfire, Douglas-

fir densities (trees > 4 cm DBH) ranged from 97-521 trees ha-1 (mean 242 trees ha-1), lodgepole 

pine from 695-1713 trees ha-1 (mean 894 trees ha-1), subalpine fir from 224-988 trees ha-1 (mean 

566 trees ha-1), and Engelmann spruce from 385-988 trees ha-1 (mean 601 trees ha-1). Simulated 

basal areas also were within observed ranges for Douglas-fir, lodgepole pine, and Engelmann 

spruce throughout stand development; however, field observations for older (> 150-year-old) 

subalpine fir stands showed a decline in basal area that was not captured in simulated stands 

(Fig. B.1f). Simulated stands did not always achieve maximum or minimum values observed in 

the field. Across all species, the range of iLand simulations encompassed 69% of field 
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observations of stand density (n = 186) and 67% of field observations of basal area (n = 186). 

Simulated QMDs and heights also fell within observed ranges of field data (Kashian et al., 

2005a; Simard et al., 2011; Donato et al., 2013a; Griffin et al., 2013; Kashian et al., 2013; USDA 

Forest Service, 2016), and variation among stands was maintained over time (Fig. B.2). 

 

2. Succession experiment 

We next evaluated iLand’s ability to achieve expected late-seral stand structure and 

species composition after 300 years of succession in three distinct, widespread forest types in the 

GYE: (1) Low-elevation Douglas-fir, (2) mid-elevation lodgepole pine, and (3) high-elevation 

spruce-fir. Geographic locations for each forest type were determined by extracting random 

points > 1 km apart from a map of Yellowstone National Park (YNP) pre-1988 cover types 

(Despain, 1990; provided by YNP Spatial Analysis Center). To minimize overlap between 

climatic conditions of the three forest types, high-elevation Douglas-fir, low-elevation spruce-fir, 

and extreme high- and low-elevation lodgepole pine points were removed (elevations from 10-m 

Digital Elevation Model provided by YNP Spatial Analysis Center). From this dataset, 10 points 

were randomly sampled from each forest type (Table B.1) and used to derive historical climatic 

(Daymet Version 3; Thornton et al., 2017) and edaphic (CONUS-SOIL; Miller and White, 1998) 

conditions for simulated stands (see Fig. B.3 for climate envelope). Relative soil fertility was 

assigned based on soil parent material associated with each forest type (andesite for Douglas-fir 

and spruce-fir, rhyolite for lodgepole pine; Despain, 1990; Knight et al., 2014). 

For each forest type, 10 1-ha stands were simulated for 300 years (climate year drawn 

randomly with replacement, no disturbance) along an elevation transect, starting from bare 

ground and allowing seed inputs from two, opposite sides (Fig. B.4). Seed availability differed 
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by forest type based on tree species composition (Table B.1), and once mature trees had 

established, simulated stands could also serve as seed sources for each other. Because seed inputs 

were affected by stochastic processes (e.g., probability of mast year) and we were interested in 

capturing a wide range of stand structures, simulations were replicated three times for a total of n 

= 30 per forest type. 

Simulated stand trajectories of tree density, basal area, and importance value (IV, species 

proportion of density + species proportion of basal area, potential range from zero to two) were 

consistent with expectations of succession over time for the studied forest types (Fig. B.5). Early 

pulses of lodgepole pine regeneration occurred in both Douglas-fir and spruce-fir forests (Fig. 

B.5a,c), but after 300 years of stand development, forest types were dominated by expected 

species (Fig. B.5g,i). Additionally, subalpine fir basal area and IV declined in older high-

elevation spruce-fir stands (Fig. B.5i), which is consistent with expected increasing dominance 

of longer-lived spruce (Aplet et al., 1988, 1989; Baker, 2009).  

Simulated mature (300-year-old) stand structure and dominant species composition 

overlapped with observed ranges in field data (Figs. B.6-B.8; Binkley et al., 2003; Kashian et al., 

2005b; Donato et al., 2016). However, simulated stem densities did not reach the highest values 

recorded in field data, and median simulated densities were lower than median observed 

densities (Figs. B.6-B.8a). These discrepancies likely reflect the subsetting of simulated forest 

types by elevation (e.g., low-elevation Douglas-fir stands are more dry than mesic) and the lack 

of fire-induced regeneration of serotinous lodgepole pine. Basal areas and dominance of species 

were mostly consistent with field observations (Figs. B.6-B.8b-c). 
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3. Model comparison with FVS 

We evaluated iLand’s ability to respond appropriately to variation in initial stem densities 

and environmental conditions by comparison with the Forest Vegetation Simulator, a widely 

used semi-distance-independent individual-tree growth and yield model parameterized for the 

GYE (Teton Variant; Keyser and Dixon, 2008). In FVS, stand level variables such as elevation, 

slope, and aspect incorporate environmental variation among sites and affect tree growth. We 

simulated single-species stand development of the same lodgepole pine (n = 70) and Douglas-fir 

(n = 34) stands (starting at 24 years postfire) in both iLand and FVS for 300 years without 

disturbance under historical climate conditions. Initial conditions and simulation in iLand 

followed the methods for (1) single-species evaluation, and initial conditions for FVS (densities, 

tree sizes, stand environmental variables) were derived from the same field data. We used 

empirically-derived parameters from two studies that successfully evaluated and applied FVS for 

these two species in the GYE (Donato et al., 2013b; Seidl et al., 2016) to adjust tree growth, 

mortality, and infilling in FVS. 

Stand densities and basal areas for the same stands simulated in iLand versus FVS were 

compared at three time periods during stand development (74, 124, and 224 years postfire; Figs. 

B.9 and B.10). Spearman’s rank order correlation was used to compare stands modeled with 

iLand and FVS because assumptions of normality and linearity were not met. After 50 years of 

simulation (74 years postfire), iLand and FVS represented lodgepole pine stand densities and 

Douglas-fir stand densities and basal areas similarly across a wide range of initial densities and 

environmental conditions (rs = 0.70, 0.94, and 0.55, respectively, all p < 0.001), but iLand and 

FVS-simulated lodgepole pine basal areas were only weakly correlated (rs = 0.24, p < 0.05). In 
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both cases the strength of correlation between iLand and FVS for the same stands decreased with 

stand age (Figs. B.9 and B.10).  

Simulated iLand and FVS stand trajectories for density and basal area were compared 

over 300 years with each other and with field observations (combined research publication and 

FIA data from single-species evaluation; Fig. B.11). Although the ranges overlapped for much of 

earlier (< 150 years) stand development, development trajectories differed over time. FVS 

median stand densities were mostly higher and median basal areas appeared to more closely 

follow a logistic (Douglas-fir) or logarithmic (lodgepole pine) growth curve than in iLand. 

During the first 150 years of simulation, both models maintained variation in stand density and 

basal area and encompassed many of the field observations. Later in stand development, FVS 

simulations converged, particularly for basal area, which is consistent with intended model 

behavior to approach a maximum stand density index in the absence of disturbance (Crookston 

and Dixon, 2005). However, iLand simulations continued to capture the variability observed in 

field data for late-seral stands. 
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Table B.1. Elevation ranges and seed source species composition for each forest type. All 

species were included as potential seed sources in all forest types (minimum value = 0.01). 

Species composition was calculated from trees greater than breast height in reference field data. 

Abla = Abies lasiocarpa (subalpine fir), Pico = Pinus contorta var. latifolia (lodgepole pine), 

Pien = Picea engelmannii (Engelmann spruce), and Psme = Pseudotsuga menziesii var. glauca 

(Douglas-fir). 

Forest type Elevation 
range (m) 

Seed source species composition Reference for seed source 
species composition Abla Pico Pien Psme 

Douglas-fir 1993-2275 0.06 0.16 0.02 0.76 Donato et al. 2013a, 150-200-
year-old Douglas-fir forest 

       

Lodgepole 
pine 2196-2573 0.03 0.90 0.03 0.04 

Kashian et al. 2005b, 250-358-
year-old stands in a lodgepole 
pine chronosequence 

       

Spruce-fir 2427-2774 0.52 0.03 0.44 0.01 Binkley et al. 2003, 200-450-
year-old spruce-fir forest 
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Figure Legends 

Fig. B.1. (a-h) Trajectories of stand density and basal area over time. All values are for trees > 4 

cm diameter at breast height (DBH) to be consistent with the measurements reported in available 

field data. Density is on a log10 scale. Lines show simulated stand trajectories, and points show 

field observations, differentiated by data source [research publications (Kashian et al., 2005a; 

Simard et al., 2011; Donato et al., 2013a; Griffin et al., 2013) or FIA Database (USDA Forest 

Service, 2016)].  

 

Fig. B.2. (a-h) Trajectories of quadratic mean diameter (QMD) and mean stand height over time. 

All values are for trees > 4 m in height. Lines show simulated stand trajectories, and field 

observation points are differentiated by data source [research publications (Kashian et al., 2005a; 

Simard et al., 2011; Donato et al., 2013a; Griffin et al., 2013) or FIA Database (USDA Forest 

Service, 2016)]. 

 

Fig. B.3. Climate envelope for succession experiment, characterized by mean annual 

precipitation and mean annual temperature for each forest type. Each simulated stand is 

represented by one point within this climate space. 

 

Fig. B.4. Simulation layout for a single forest type. Each forest type was simulated separately. 

Stands (1-ha, n = 10 per simulation) were arranged from low to high elevation, with seed inputs 

from both adjacent sides. Seed availability differed by forest type (Table B.1), and once mature 

trees had established, simulated stands could also serve as seed sources for each other. 

 



 

 27 

Fig. B.5. Mean (n = 30) stand structural trajectories (based on trees > breast height) for three 

forest type transects [Douglas-fir (a, d, g), lodgepole pine (b, e, h), and spruce-fir (c, f, i)], 

starting from bare ground with multispecies seed inputs. Importance values (g-i) were calculated 

for each species (maximum value = 2).  

 

Fig. B.6. Boxplot comparison of forest structure and species composition in simulated mature 

Douglas-fir stands (300 years old, n = 30) with lower-montane, mature Douglas-fir dominated 

stands in the GYE on mesic (n = 23) and dry (n = 32) topographic positions (Donato et al., 

2016). Total (all species) stand densities (a), total basal areas (b), and Douglas-fir dominance as 

proportion of tree density (c) were calculated for trees > 15 cm DBH to be consistent with field 

observations. Bold lines show the median value, boxes show the interquartile range (IQR), and 

whiskers extend 1.5 x IQR or to the most extreme data point (whichever is closest to the 

median). Prop = proportion. 

 

Fig. B.7. Boxplot comparison of forest structure and species composition in simulated mature 

lodgepole pine stands (300 years old, n = 30) with mature stands in a lodgepole pine 

chronosequence in the GYE (250-358-year-old stands, n = 12; Kashian et al., 2005b). Total (all 

species) stand densities (a), total basal areas (b), and lodgepole pine dominance as proportion of 

tree density (c) were calculated for trees > 4 cm DBH to be consistent with field observations. 

Bold lines show the median value, boxes show the interquartile range (IQR), and whiskers 

extend 1.5 x IQR or to the most extreme data point (whichever is closest to the median). Prop = 

proportion. 
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Fig. B.8. Boxplot comparison of forest structure and species composition in simulated mature 

spruce-fir stands (300 years old, n = 30) with old growth spruce-fir stands in Colorado (200-450-

year-old stands, n = 18; Binkley et al., 2003). Total (all species) stand densities (a), total basal 

areas (b), and subalpine fir (c) and Engelmann spruce (d) dominance as proportion of tree density 

were calculated for trees > breast height to be consistent with field observations. Bold lines show 

the median value, boxes show the interquartile range (IQR), and whiskers extend 1.5 x IQR or to 

the most extreme data point (whichever is closest to the median). Prop = proportion. 

 

Fig. B.9. Comparison of densities (a-c) and basal areas (d-f) for the same Douglas-fir stands (n = 

34, each stand = 1 point) simulated in iLand and FVS at three time periods: 74, 124, and 224 

years postfire. Stand structure was calculated from trees > 4 m in height. Stand density is on a 

log10 scale, and a 1:1 line is shown for comparison on each plot. Spearman’s rank correlation 

coefficient and two-tailed p-values are noted on each plot. * 0.01 < p < 0.05, ** 0.001 < p < 0.01, 

*** p < 0.001, ns = not significant at α = 0.05. 

 

Fig. B.10. Comparison of densities (a-c) and basal areas (d-f) for the same lodgepole pine stands 

(n = 70, each stand = 1 point) simulated in iLand versus FVS at three time periods: 74, 124, and 

224 years postfire. Stand structure was calculated from trees > 4 m in height. Stand density is on 

a log10 scale, and a 1:1 line is shown for comparison on each plot. Spearman’s rank correlation 

coefficient and two-tailed p-values are noted on each plot. * 0.01 < p < 0.05, ** 0.001 < p < 0.01, 

*** p < 0.001, ns = not significant at α = 0.05. 
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Fig. B.11. Stand trajectories in density (a, c) and basal area (b, d) for lodgepole pine (n = 70) and 

Douglas-fir (n = 34) stands simulated with iLand (red shading, solid line) and FVS (blue 

shading, dashed line) over time, compared to field observations. All values are for trees > 4 cm 

diameter at breast height (DBH) to be consistent with the measurements reported in available 

field data. Density is on a log10 scale. Simulated medians (lines), interquartile ranges (IQR, 

intermediate shading), and ranges (minimum to maximum values, light shading) are shown.  
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Fig. B.2 
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Fig. B.3  
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Fig. B.4  
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Fig. B.5  
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Fig. B.6  
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Fig. B.7  
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Fig. B.8  
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Fig. B.9  
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Fig. B.10 

(a)   rs = 0.70***
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Fig. B.11 

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●
●

1

10

102

103

104

(a) Douglas−fir

●●
●
●

●

●

●
●

●

●
●

●

●
●

●●●
●●

●
●

●

●

●

●
● ●

● ●
●●

●

●
●

●
●

●

●

●
●

●

●●●●
● ●●●
● ● ●
●
●●

●
●●

●
●
●

●

●●

1

10

102

103

104

0 100 200 300

(c) Lodgepole pine

Stand density
D

en
si

ty
 o

f t
re

es
 >

4 
cm

 D
BH

 (t
re

es
 h

a-
1 )

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

0

20

40

60

80
(b) Douglas−fir

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●●
●

●

●●
●●

●

0

20

40

60

80

0 100 200 300

(d) Lodgepole pine

Stand basal area

Ba
sa

l a
re

a 
of

 tr
ee

s 
>4

 c
m

 D
BH

 (m
2  h

a-
1 )

Time since fire (years)

FVS Median IQR Range     iLand Median IQR Range

● Field observations


	Looking beyond the mean: Drivers of variability in postfire stand development of conifers in Greater Yellowstone
	Introduction
	Objectives

	Methods
	Study area
	Simulation model
	Model overview
	Model parameterization
	Model evaluation

	Initial conditions and drivers
	Simulation experiment
	Model outputs and analysis

	Results
	Variation and convergence in among-stand structural trajectories (Both vary scenario)
	Influence of early regeneration densities versus abiotic conditions on stand structural variability (among-scenario comparisons)

	Discussion
	Variation and convergence in among-stand structural trajectories
	Influence of early regeneration densities versus abiotic conditions on stand structural variability
	Implications and limitations of our model-based approach
	Variability is important for anticipating forest landscape structure and function

	Acknowledgements
	Data availability statement
	References


