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Abstract

Context Fire in forested wildland urban interface

(WUI) landscapes is increasing throughout the west-

ern United States. Spatial patterns of fuels treatments

affect fire behavior, but it is unclear how fire risk and

fuel treatment effectiveness will change under future

conditions.

Objectives (1) How do area burned, forest and fuel

characteristics, and fire risk change over time under

twenty-first-century climate? (2) When defensible

space fuels treatments are applied around all houses,

which scenarios of WUI housing amount and config-

uration minimize fire risk?

Methods In generic 10,000-ha US Northern Rocky

Mountain subalpine forest landscapes, we simulated

21 scenarios differing in fuels treatment, housing

amount and configuration (neutral landscape models),

and projected future climate using the process-based

model iLand. We compared fire risk at three scales:

1-ha home ignition zone (HIZ), 9-ha safe suppression

zone (SSZ), and landscape.

Results Under warm-dry climate, annual area

burned increased, but area burned at high fire intensity

peaked in the 2060s and then declined sharply; fire risk

followed similar trends. Defensible space treatments

maintained low flame lengths in HIZs. Clustered

housing was more effective at reducing SSZ risk

compared to dispersed housing. At landscape scales,

treating more of the landscape reduced fire risk but

configuration was unimportant.

Conclusions The most effective strategy for reduc-

ing fire risk depends on the scale at which risk is

assessed. Clustering WUI developments and treating

between 10 and 30% of the landscape every 10 years

can reduce fire risk across multiple scales.

Keywords Mechanistic models � Disturbance �
NLM � Landscape metrics � Wildfire feedbacks � Fire
behavior modeling

Introduction

Human communities in increasingly fire-prone land-

scapes need to understand and adapt to expected

changes in wildfire activity (Moritz et al. 2014;

Schoennagel et al. 2017). Defined as the area where
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structures meet or intermingle with wildland vegeta-

tion (USDA and USDI 2001; Radeloff et al. 2005), the

wildland urban interface (WUI) comprises 10% of the

area, one third of the houses, and one third of the

population of the conterminous United States (Mart-

inuzzi et al. 2015). However, 69% of the buildings

destroyed by wildfire are in the WUI (Kramer et al.

2018). Wildfire in WUI communities in western US

forests is increasing due to climate change (Westerling

et al. 2006; Abatzoglou and Williams 2016; Wester-

ling 2016), human ignitions (Balch et al. 2017), rapid

WUI growth (Radeloff et al. 2018), and, in some forest

types, fuel accumulation due to past fire exclusion

(Dodge 1972; Graham et al. 2004). Moderate to large

increases in fire probability are expected in nearly 40%

of existing western USWUI over the next two decades

(Schoennagel et al. 2017). It is uncertain whether and

how WUI communities can effectively mitigate

increases in wildfire risk.

Managing fire-prone WUI communities entails

minimizing fire risk to structures (hereafter, ‘‘fire

risk’’), often by removing fuels in the area immedi-

ately surrounding a structure (30–60 m radius; NFPA

2018). Maintaining this so-called ‘‘defensible space’’

is considered one of the most effective strategies for

preventing structure ignition and subsequent loss

(Cohen 2000; Bhandary and Muller 2009; Syphard

et al. 2014). Structures can be ignited by direct flame

contact, by radiant heat from nearby burning vegeta-

tion, or by firebrands, which can travel long distances

from high-intensity fire (Cohen 2000; Calkin et al.

2014; Caton et al. 2017). Fuels reduction treatments in

the WUI entail removing surface and canopy fuels,

which decreases fire intensity (i.e., the energy output

of the fire) and spread, and increasing canopy base

height, which lowers the likelihood of crown fire

initiation (Graham et al. 2004; Agee and Skinner

2005; Reinhardt et al. 2008; Caton et al. 2017).

Removing fuels in defensible space therefore reduces

the likelihood of structure ignition due to direct flame

contact or radiant heat, whereas removing fuels within

and near WUI communities reduces firebrand produc-

tion by reducing fire intensity and size. The effective-

ness of fuels reduction in altering fire behavior both

locally and within the larger landscape depends on

forest type and fire weather (Schoennagel et al. 2004).

Maintaining acceptable levels of fire risk may or

may not be possible as climate conditions and fire

activity change (Schoennagel et al. 2017). Effects of

fuels treatment on fire in forested and WUI landscapes

under current conditions are well studied (e.g., Finney

et al. 2007; Schmidt et al. 2008; Sturtevant et al. 2009;

Ager et al. 2010b; Dicus and Osborne 2015; Barros

et al. 2017), but feedbacks among climate, recurring

fires, and forest regrowth may alter treatment efficacy

in the future. Warmer, drier springs and summers,

including prolonged heat waves or drought, deplete

fuel moisture over large areas and may lead to

increasing fire spread and intensity (Byram 1959;

Bessie and Johnson 1995; McKenzie et al. 2004;

Littell et al. 2009; Abatzoglou and Williams 2016;

Westerling 2016), amplifying fire risk. Alternatively,

drier growing season conditions may diminish bio-

mass productivity and reduce fuel loads in some

ecosystems (Westerling and Bryant 2008; Moritz et al.

2012). Furthermore, an increase in area burned may

consume fuels and thus dampen subsequent fire

activity (Stephens et al. 2013; Parks et al. 2015;

Romme and Turner 2015). Process-based forest land-

scape and disturbance simulation models enable

exploration of emergent spatiotemporal dynamics

among forests, fuels treatments, and fire under novel

climate drivers and over decadal time scales (Korzu-

khin et al. 1996; Seidl et al. 2011; Gustafson 2013;

Scholes 2017).

Strategic design and placement of fuels treatments

can disrupt fire spread, reduce intensity, and facilitate

fire suppression within a landscape (Agee et al. 2000;

Finney 2001; Finney et al. 2007). Above a threshold

proportion of a landscape (i.e., critical percolation

probability; Gardner et al. 1987), randomly placed

fuels treatments can form a continuous fire break

(Bevers et al. 2004). Previous studies have used

relatively simple models to identify spatially optimal

fuel treatments for disrupting fire spread given

assumptions about fuel treatment effectiveness (e.g.,

Finney 2007; Wei et al. 2008). These models often

examine single fire events under a suite of potential

fire start locations and fire weather conditions. How-

ever, effects of spatial patterns of fuel treatments on

fire behavior remain incompletely understood across

multiple fire seasons under simultaneously changing

climate and fuel conditions.

Fuel treatments in the WUI need to account for the

locations of structures, which may not coincide with

the locations of spatially optimal fuel treatments (Bar

Massada et al. 2011). The amount and configuration of

structures can also affect WUI fire risk (Ager et al.
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2010b; Syphard et al. 2012; Alexandre et al. 2016).

Lower-density and isolated houses may have a higher

probability of being damaged or destroyed by wildfire

because houses are embedded within contiguous

vegetation and difficult for suppression crews to

access (Syphard et al. 2012, 2014, 2019). State and

local governments across the western US are seeking

land use planning solutions to minimize fire risk in

current and future WUI developments (Rasker and

Barrett 2016; Steelman 2016).

In our study, we used neutral landscape models

(NLMs) to evaluate hypothetical scenarios of WUI

development. We applied defensible space treatments

in the 1-ha area around each home in our simulations,

and thus the amount and configuration of WUI

housing corresponded to the amount and configuration

of fuels treatments. By using NLMs to vary amount

and configuration independently, we were able to

quantify relationships between landscape pattern of

structures (assuming defensible space fuels treat-

ments) and resulting fire processes (Gardner et al.

1987; Turner et al. 1989; Gardner and Urban 2007).

We then explored the influence of changing climate

and the spatial pattern of houses with defensible space

fuels treatments on fire risk in US Northern Rocky

Mountain subalpine forests over the twenty-first

century (Table 1). We focused on mesic subalpine

forests because they make up a large proportion of

Northern Rocky Mountain forests (Baker 2009) and

the effects of fuels reductions on lowering fire risk are

less well-studied compared to dry forest types (Hudak

et al. 2011). We used NLMs, the forest simulation

model iLand (Seidl et al. 2012), and widely applied

fire behavior modeling equations for estimating fire

intensity (sensu Nelson et al. 2017) to evaluate fire risk

toWUI structures at three spatial scales. We quantified

fire intensity in the 1-ha defensible space immediately

surrounding a structure (home ignition zone, HIZ), in

the 9-ha safe suppression zone (SSZ) in which

intensity must be low for firefighters to work safely

(Scott 2003), and at the landscape scale at which high

intensity fire patches produce firebrands (Fig. 1).

Although fire risk was assessed at three scales, fuels

were only treated within each home’s 1-ha defensible

space. We asked: (1) How do area burned, forest and

fuel characteristics, and fire risk change over time

under twenty-first-century climate? (2) When defen-

sible space treatments are applied around all houses,

which scenarios of WUI housing amount and config-

uration minimize fire risk at each spatial scale? We

hypothesized that fire risk to structures would increase

at all scales over the twenty-first century with warmer

and drier climate, decrease at SSZ and landscape

scales with greater housing amount due to greater area

treated, and decrease at SSZ scale with clustered rather

than dispersed housing configurations (Table 2).

However, we expected that fire risk quantified at the

landscape scale would be higher in clustered rather

than dispersed scenarios due to larger areas of

contiguous forest.

Table 1 Factors and levels for 21 simulation scenarios, 18 with treatment (3 amounts 9 2 configurations 9 3 GCMs) and 3 without

(3 GCMs)

Factor Levels

Fuels treatment 1. Aggressive fuels reduction in 1-ha defensible space around each

structure (NFPA 2016, 2018) every 10 years

2. No treatment (not multiplied by full factorial)

Housing amount (i.e., amount of landscape treated) 1. Amount = 10%

2. Amount = 30%

3. Amount = 50%

Housing configuration 1. Dispersed (random percolation neutral landscape models)

2. Clustered (random rectangular neutral landscape models)

General Circulation Model (GCM), all forced with

Representative Concentration Pathway 8.5

1. CanESM2

2. HadGEM2-CC

3. HadGEM2-ES

Each scenario was run for n = 20 neutral landscapes, for a total of 420 simulation runs
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Methods

Study area

The US Northern Rocky Mountains encompass over

30 million ha from central Wyoming to the US–

Canada border and are dominated by conifer forests

(Baker 2009). Subalpine forests occupy * 45% of the

forested area (Rollins and Frame 2006; Harvey et al.

2016). Lodgepole pine (Pinus contorta var. latifolia)

often dominates the lower subalpine zone, Engelmann

spruce (Picea engelmannii) and subalpine fir (Abies

lasiocarpa) tend to dominate the upper subalpine

zone, and whitebark pine (Pinus albicaulis) is com-

mon near upper tree line (Baker 2009). These high-

elevation, cool, mesic forests have continuous, abun-

dant canopy fuels and are adapted to infrequent

(100–300 year return interval) stand-replacing fire

regimes (Romme and Despain 1989; Schoennagel

et al. 2004; Whitlock et al. 2008; Higuera et al. 2011).

Fire activity in the Northern Rocky Mountains is

strongly linked to climatic drivers that lower fuel

moisture during the fire season (Littell et al. 2009), and

high-intensity and -severity crown fires in subalpine

forests are driven by rare combinations of drought and

high wind (Romme 1982; Renkin and Despain 1992;

Bessie and Johnson 1995). As climate has changed in

recent decades, this region has experienced some of

the greatest increases in number of large fires and area

burned among western US forests (Westerling et al.

2006; Westerling 2016), and the proportion of area

burned as stand-replacing fire has also increased

(Harvey et al. 2016). Although the US Northern

Rocky Mountains are characterized by extensive areas

of public land, WUI development has rapidly

expanded in recent decades (Radeloff et al. 2018),

and by some estimates[ 80% of potential WUI

remains undeveloped and available for future growth

(Gude et al. 2008).

Simulation model

We used the process-based forest landscape and

disturbance model iLand, which simulates growth,

mortality, and competition at the level of individual

trees and cohorts of saplings and seedlings; considers

species-specific responses to environmental drivers;

and incorporates spatially explicit processes such as

seed dispersal and fire spread (Seidl et al. 2012, 2014;

Seidl and Rammer 2020). Trees[ 4 m in height are

individually modeled and spatially explicit, and trees

compete with their neighbors for light, nutrients, and

water. Processes are simulated at multiple temporal

Fig. 1 Three spatial scales at which fire risk is measured. In the

home ignition zone, which corresponds with the 1-ha defensible

space around a structure, higher fire intensity implies increased

fire risk. Fire risk is assessed at the safe suppression zone scale

as the percentage of houses exposed to at least 1 ha of adjacent

high intensity fire (8-neighbor rule). In the entire landscape,

class-level metrics for high intensity fire are calculated to assess

fire risk; lighter pink colors represent areas of low to moderate

fire intensity
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and spatial scales. For example, daily climate drivers,

including minimum and maximum temperature, pre-

cipitation, radiation, and vapor pressure deficit affect

canopy carbon uptake, which is further modified by

species-specific tolerances for temperature extremes,

drought stress, shading, and nutrient availability.

Available light is calculated at 2 9 2 m horizontal

resolution based on shortwave radiation and shading

due to tree crowns. Other environmental conditions,

such as soil water and nutrients are calculated at the

resolution of 1-ha stands. Trees die due to intrinsic

reasons, with increasing mortality probability as trees

approach their maximum age or size. Environmental

stressors that lead to carbon starvation and distur-

bances such as fire also cause tree mortality in the

model. Seed masting, production, quantity, and dis-

persal distances vary by species, and seedling estab-

lishment occurs when specific environmental

thresholds for winter chilling, growing degree days,

and soil water potential are met (Nitschke and Innes

2008; Hansen et al. 2018). Stems\ 4 m in height

(seedlings and saplings) are modeled as cohorts at 2-m

resolution until they reach 4 m in height. iLand has

been parameterized and evaluated for five widespread

trees species in the US Northern RockyMountains and

generates realistic stand structures, variability among

stands, forest composition, and fire-induced regener-

ation of serotinous lodgepole pine (Braziunas et al.

2018; Hansen et al. 2018, 2020).

Fire behavior in iLand responds dynamically to

fire-year weather (fuel moisture), fuels, and topogra-

phy (Seidl et al. 2014; Seidl and Rammer 2020). Dead

surface fuels are tracked in two pools, forest floor (1-h

and 10-h fuels) and downed woody debris (100-h and

1000-h fuels). In this study, we extended iLand to

quantify live woody surface fuels as well as canopy

fuel metrics including canopy fuel load, canopy bulk

density, and canopy base height at 1-ha resolution

(Online Resource Appendix A). Fuel moisture is

estimated from the Keetch–Byram Drought Index

Table 2 Hypotheses for the effects of fuel treatment, housing amount, housing configuration, and twenty-first-century climate on fire

risk to structures at three spatial scales

Hypothesis description Expectations and rationale Hypothesized effects

Fire

risk in

HIZ

Fire

risk in

SSZ

Landscape

fire risk

Fuels treatment

Effect of fuels treatment in

defensible space, compared to

no treatment

Fuels removal will reduce fire intensity and therefore risk at

all scales

- - -

Housing amount

Effect of increased amount of

landscape treated

As more of the landscape is treated, treated areas will be more

likely to intersect with SSZs of adjacent structures or with

high intensity fire patches, therefore reducing fire risk

0 - -

Housing configuration

Effect of clustered rather than

dispersed housing configuration

SSZ fire risk will be lower in clustered scenarios because

structures and therefore treated areas will be more likely to

be adjacent to one another. However, landscape scale fire

risk may increase because there may be larger patches of

contiguous forest in clustered scenarios

0 - ?

Climate

Effect of later compared to earlier

twenty-first-century climate

Future climate will lead to increased fire risk due to both

increased frequency of drought and increased area burned;

however, negative feedbacks from fuels consumed by fire or

decreased productivity during the course of this simulation

may mitigate this increased risk, so this expectation is

uncertain

? ? ?

Effect of fire risk is summarized as increased (?), decreased (-), or no change (0)
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(KBDI), an index for predicting fire potential based on

soil moisture depletion in response to cumulative

precipitation and evapotranspiration (Keetch and

Byram 1968). KBDI—originally ranging from 0 to

800—is standardized on a scale of 0 (wettest) to 1

(driest) and computed annually in iLand, which

enables the index to capture changes in fire season

length in addition to extremely hot and dry years.

KBDI serves as a proxy for fuel moisture in calculat-

ing fuel loads in iLand, and additionally modifies fire

ignition probabilities and fire sizes. Fire size is

sampled from a negative exponential distribution,

and threshold KBDI values are used to constrain fire

sizes in cool-wet years or establish aminimum fire size

in hot-dry years. Wind speed is randomly selected

from a user-specified range and held constant during a

fire event. Fire is modeled at 20-m resolution and

spreads via a cellular automaton model in eight

possible directions, influenced by topography, wind

speed, and wind direction. Fire spread is constrained

by a minimum fuel load required for spread and a

maximum potential fire size, along with a fire extinc-

tion probability that is applied to each burning pixel.

Fire severity and resulting tree mortality are calculated

from fuel loads, fuel moisture, and species- and size-

specific fire resistance. Hansen et al. (2020) parame-

terized and evaluated the iLand fire module for this

region, and Turner et al. (in prep) updated fire severity

parameters based on additional analyses. We here

specified a baseline fire return interval of 160 years,

representing lodgepole pine forests at the lower end of

their elevation range (Schoennagel et al. 2003).

Simulation landscapes and initial conditions

To focus on effects of climate and spatial pattern of

fuels reduction treatments, we minimized variability

in other factors by creating a generic 10,000-ha

simulation landscape (1-ha resolution) that was flat

with spatially homogeneous soil and climate condi-

tions representative of lodgepole pine-dominated

forest near the WUI community West Yellowstone,

MT (Turner et al. 2016). We extracted soil texture and

effective depth from CONUS-SOIL (Miller andWhite

1998) and daily climate drivers from 1950 to 2005 for

the CanESM2 general circulation model (4-km reso-

lution; climate projections described below). We

assigned a soil fertility value assuming underlying

rhyolitic parent material (Despain 1990; Braziunas

et al. 2018).

Initial forest composition and stand structures were

generated from a 300-year model spinup under

historical climate following Hansen et al. (2020). We

first identified forest inventory and analysis (FIA)

plots in northwest Wyoming (FIADB 2019) that were

representative of dense lodgepole-pine dominated

subalpine forest (1900–2400 m elevation; Schoen-

nagel et al. 2003). We selected plots dominated by

lodgepole pine based on importance value (IV) � 1.5

(IV = species proportion of stand density ? species

proportion of basal area). We used these plots

(n = 106 plots) to initialize lodgepole pine and four

other species, which were present in minor propor-

tions: Douglas-fir (Pseudotsuga menziesii var.

glauca), subalpine fir, Engelmann spruce, and quaking

aspen (Populus tremuloides). Serotinous and non-

serotinous lodgepole pine are simulated separately in

iLand, and we assumed that 25% of initial lodgepole

pine trees were serotinous based on field observations

of high-serotiny stands (Schoennagel et al. 2003). For

year 0 of the spinup, we varied initial stand structure

and species composition derived from FIA plots at

10-m resolution across the landscape.

We then simulated forest development under

historical climate conditions and fire activity over a

300-year period. Each year, climate was randomly

drawn with replacement from 1950 to 2005 under

CanESM2. We included a 2.5-km buffer around the

edge of the study landscape to ensure the landscape

edges had an equal probability of burning (total

simulated landscape size = 22,500 ha). Following

spinup, most of the landscape was lodgepole pine-

dominated with a mix of stand ages and structures

consistent with the regional landscape (Online

Resource Appendix B, Fig. B1). Stands (1-ha resolu-

tion) were considered forested when there were � 50

trees ha-1 (Hansen et al. 2018) based on stems � 2 m

in height, which comprise the canopy fuel layer

(Keane 2015).

Simulation experiment

Overview

For this 10,000-ha subalpine forest landscape, we

conducted a simulation experiment in which we

estimated fire risk for 21 scenarios that differed in
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projected future climate, whether or not fuels were

treated, and housing amount and configuration

(Table 1 and described below). We simulated 20

replicates of each scenario in iLand for 120 years

(1980–2099), resulting in 420 simulation runs (360

with fuels treatments and 60 without).

Climate projections

We used three general circulation models (GCMs) to

represent a range of potential future climates (Fig. B2).

Projected temperature is similar among models, but

some models project increased precipitation

(CanESM2; Chylek et al. 2011) whereas others have

distinct periods of drought varying in timing and

intensity (HadGEM2-CC and HadGEM2-ES; Collins

et al. 2011). All GCMs were forced with representa-

tive concentration pathway (RCP) 8.5, which is a

higher emissions pathway that most closely tracks

current and expected CO2 emissions through midcen-

tury (Schwalm et al. 2020). We focused on variability

among GCMs (emphasizing differences in precipita-

tion) rather than RCPs (38 versus 5 8C warming)

because of the strong effects of aridity on fire activity

(Abatzoglou and Williams 2016; Higuera and Abat-

zoglou 2020) and drought on postfire tree regeneration

(Stevens-Rumann and Morgan 2019). We extracted

daily climate drivers through 2099 for each GCM from

MACAv2-METDATA, which uses the Multivariate

Adaptive Constructed Analogs approach and MET-

DATA observational dataset to statistically downscale

climate drivers to 4-km resolution (Abatzoglou and

Brown 2012; Abatzoglou 2013).

Defensible space fuels treatments

In treatment scenarios, we simulated defensible space

management in the 1-ha area surrounding each

hypothetical house based on National Fire Protection

Association (NFPA) standards (NFPA 2018). We

followed the most aggressive fuel reduction prescrip-

tions in the NFPA standard because our goal was to

reduce fire risk as much as possible within defensible

space. For the surface fuel layer, we removed dead and

downed (100-h and 1000-h) fuels and all live vege-

tation less than 4 m in height (tree seedlings and

saplings). For the canopy fuel layer, we used species-

specific maximum crown radius equations (Purves

et al. 2007) to approximate an average crown radius

based on stand quadratic mean diameter (QMD).

Following guidelines for recommended crown spacing

of 5.5 m between crowns (NFPA 2018), we then

derived maximum stocking densities for each tree

species based on stand QMD (Fig. B3). For each 1-ha

grid cell in which defensible space treatment was

applied, the species with the maximum IV was used to

set maximum stocking targets, and smaller trees were

preferentially removed (i.e., thinning from below,

which simultaneously increases canopy base height

while reducing canopy fuels; Graham et al. 1999).

Defensible space treatment was implemented during

the first simulation year (1980) and repeated every

10 years based on a conservative estimate of treatment

duration effectiveness (Kalies and Yocom Kent 2016;

Schoennagel et al. 2017).

Amount and configuration of houses and fuels

treatments

We used neutral landscape models to generate repli-

cate maps that varied in the amount and configuration

of housing, and therefore fuels treatments, within the

simulation landscape. We assumed that only one

house would be built within a given 1-ha grid cell. The

surrounding hectare constituted that structure’s defen-

sible space and was classified as developed area. We

selected levels of housing amount consistent with the

definition of intermix WUI ([ 6.17 houses km-2 and

at least 50% wildland vegetation; USDA and USDI

2001; Radeloff et al. 2005). We simulated three levels

of housing amount (10, 30, or 50 houses km-2),

corresponding to 10%, 30%, or 50% of the landscape

classified as developed area rather than wildland

vegetation. Housing configuration was then either

randomly dispersed, in which single houses are

intermixed with wildland vegetation consistent with

scattered sprawl, or clustered next to areas of large,

contiguous open space, consistent with conservation

development (Pejchar et al. 2007).

We generated 20 neutral landscapes for each

combination of the three housing amounts and two

configurations using the NLMR R package (Fig. 2;

Sciaini et al. 2018). Randomly dispersed housing was

generated from simple random percolation models

(Gardner et al. 1987). Clustered housing was imple-

mented using random rectangular neutral landscape

models, in which overlapping rectangular patches are

randomly distributed until the landscape is filled, with
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the user specifying the range of patch sizes and the

total amount of area in each class (Gustafson and

Parker 1992). We set minimum and maximum patch

size based on the size of developed areas in conser-

vation development subdivisions for mountainous

counties in Colorado (Sarah E. Reed and Liba Pejchar

2019, unpublished data). Patches were defined using

the 8-neighbor rule. In our landscapes, mean devel-

opment patch sizes were 33, 76, and 285 ha for 10%,

30%, and 50% developed area, respectively, and were

within the range of Colorado conservation develop-

ment data (Fig. B4). Consistent with conservation

development principles, landscapes with clustered

housing were characterized by large areas of contigu-

ous wildland vegetation even when half of the

landscape was developed (Fig. 2).

Fire intensity and risk calculations

To quantify fire risk to structures, we first used

established fire behavior modeling methods to esti-

mate fire intensity at the resolution of a 1-ha grid cell

based on fire weather and fuels characteristics derived

from iLand outputs (see Online Appendix A for details

on quantification of fuels and fire intensity). By

estimating fire intensity as a dynamic response to

changes in forest conditions and environmental

drivers, we thereby capitalized on the strengths of

using the process-based forest simulation model iLand

to characterize future conditions. Canopy fuel char-

acteristics, surface fire behavior fuel model classifi-

cation, fire spread rates and intensities, and crown fire

occurrence were similar to comparison data and

responded appropriately to variation in fuel loads,

fuel moisture, and wind speed (Online Appendix A).

We also used fire intensity (flame length, m) to assign

fire intensity class (low, moderate, or high). High

intensity fire corresponds with flame lengths � 2.4 m,

at which point fire control is unlikely to be effective

and, as flame lengths increase, extreme fire behavior is

likely (Roussopoulos and Johnson 1975; Rothermel

1983).

We then assessed fire risk to structures at each of

our three spatial scales (Fig. 1). Home ignition zone

risk was quantified as fire intensity within the 1-ha

treated area of defensible space around each structure,

with higher fire intensities implying increased risk.

Safe suppression zone fire risk was quantified as the

Fig. 2 Example neutral landscapes generated for three housing

amounts (amount of defensible space in the landscape = 10%,

30%, or 50%) and two housing configurations (randomly

dispersed or clustered) with the NLMR R package. We assumed

only one structure was built within each 1-ha developed area,

which constituted that structure’s defensible space. Simulations

were conducted on 20 distinct neutral landscapes for each

scenario
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percentage of structures exposed to high intensity fire

in at least one of the eight neighboring grid cells in a

given year. Fire risk in the HIZ and SSZwere averaged

across areas classified as developed and containing

structures in the simulation each year, an approach that

assumes houses are rebuilt after fire. Fire risk for the

entire landscape was quantified by using three class-

level landscape metrics calculated for high intensity

area burned: percentage of landscape burned at high

intensity (PLAND), largest patch index (LPI), and

area-weighted mean patch size (AREA_AM).

Analysis

We first calculated annual area burned, fire risk, and

mean forest and fuel characteristics across the entire

landscape for each replicate of each scenario. To

evaluate temporal trends in area burned and fire risk

(question 1), which are dominated by discrete events,

we fit a loess smooth local regression line to each

response variable. We chose a smoothing span of

100 years based on the lower bound of the historical

fire return interval for lodgepole pine forest. For all

other temporal trends, we evaluated changes in mean

values over time.

To compare scenarios of housing amount and

configuration (question 2), we calculated the average

annual fire risk at HIZ, SSZ, and landscape scales over

the 120-year duration of the simulation experiment for

each replicate (n = 20 per scenario). For each no

treatment replicate, we quantified HIZ and SSZ fire

risk assuming houses were present by randomly

selecting a map from one of the housing amount and

configuration scenarios. We performed two comple-

mentary analyses. First, we compared mean fire risk

between no treatment and treatment scenarios, focus-

ing on the magnitude of change rather than statistical

tests of significance. Mean values reported in the text

are scenario means � 1 standard error, and fig-

ures show 95% confidence intervals. Second, we fit

linear mixed effects models to treatment scenarios

only, omitting no treatment scenarios, to disentangle

the effect of amount versus configuration of housing.

We included amount, configuration, and their interac-

tion as fixed effects and GCM as a random effect. We

calculated variance explained by fixed effects (mar-

ginal R2
LMM(m)) and by the full model (conditional

R2
LMM(c); Nakagawa and Schielzeth 2013), and we

evaluated the significance of GCM as a random effect

with a likelihood ratio test of the full versus reduced

model. We applied a square root transformation to

SSZ and landscape fire risk response variables to meet

assumptions of normality and equal variance. We

determined that assumptions were adequately met

based on quantile–quantile plots (normality) and

residual plots (equal variance) for each model. Anal-

yses were conducted in R version 3.6.1 (R Core Team

2019), primarily using the car (Fox and Weisberg

2019), landscapemetrics (Hesselbarth et al. 2019),

lme4 (Bates et al. 2015), lmerTest (Kuznetsova et al.

2017), MuMIn (Barton 2019), plotrix (Lemon 2006),

raster (Hijmans 2019), RSQLite (Muller et al. 2019),

stats, and tidyverse (Wickham et al. 2019) packages.

Results

Changes in forests and fire over time (question 1)

Area burned, forest and fuel characteristics (no

treatment scenarios)

Annual area burned increased during the twenty-first

century under all GCMs (Fig. 3). Under the twowarm-

dry climate models (HadGEM2-CC and HadGEM2-

ES), the latter half of the century was characterized by

many large fire years. Over this 50-year period, there

were 10 years in which annual area burned exceeded

one quarter of the landscape area (mean across n = 20

replicates), and cumulative area burned increased

exponentially starting in 2050 (Figs. 4, B6). However,

the amount of area that burned at high fire intensity did

not follow this same trajectory. Rather, high intensity

area burned peaked in 2065 (HadGEM2-ES) or 2066

(HadGEM2-CC) and then sharply declined (Fig. 3b,

c). Under warm-wet CanESM2 climate projections, in

which area burned increased more slowly, high

intensity area burned continued to increase through

the end of the twenty-first century (Fig. 3a).

Forested area (� 50 trees ha-1 based on stems �
2 m in height) and mean canopy fuel loads exhibited

punctuated declines over time (Figs. 4, B7). Abrupt

declines in forest area coincided with large fire years in

combination with harsh environmental conditions

inhibiting the establishment of trees after fire. Simi-

larly, canopy fuel loads and bulk densities exhibited

abrupt declines following large fire years but recov-

ered in some cases to pre-fire levels given sufficient
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Fig. 3 Total (black circles and line) and high intensity (red

triangles and line) area burned over time in no treatment

scenarios and under three general circulation models:

a CanESM2, b HadGEM2-CC, and c HadGEM2-ES. Points

give annual values for each replicate (n = 20) and each year.

Solid lines are a loess smooth local regression with span of

100 years. The y-axis is plotted on a log10 scale and ? 1 ha has

been added to all values to enable plotting on a log axis

Fig. 4 a–c Total forested
area, d–f canopy fuel load,

and g–i total and high

intensity annual area burned

in no treatment scenarios

under all three GCMs. Area

was considered forested if

there were C 50 trees ha-1

of C 2 m in height. Solid

lines are mean values and

ribbons show a 95%

confidence interval
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time between large fires (e.g., in the CanESM2 and

HadGEM2-ES climate models). More than 50% of

forest cover was maintained under warm-wet climate,

whereas nearly all forest was lost under warm-dry

climate projections.

Mean surface fuel load trajectories differed from

canopy fuels (Fig. B8). Forest floor biomass (1-h and

10-h fuels) declined more gradually than canopy fuels,

and declines were non-linear in warm-dry climate

projections. Downed woody debris (100-h and 1000-h

fuels) initially increased and then declined later in the

twenty-first century, but average fuel loads

remained[ 90 Mg biomass ha-1 in 2099. Seedling

and sapling biomass increased in warm-wet climate

and also exhibited local maxima. Consistent with these

trends, forested area in younger age classes (stand

ages\ 40 and 40–100 years) experienced periods of

intermittent or ongoing expansion (Fig. B5g–i).

Area burned, forest and fuel characteristics (treatment

scenarios)

Treating as much as half of the landscape resulted in

lower total and high intensity area burned compared to

no treatment scenarios but did not alter overarching

trends (Fig. B10). Average fuel loads in untreated

wildland followed similar trends regardless of treat-

ment scenario (Figs. 5, B8). In treated areas (i.e.,

defensible space), fuel loads were consistently lower

and canopy base height was consistently higher

relative to untreated areas.

Fire risk (no treatment versus treatment scenarios)

Fire risk at all scales followed similar trends as high

intensity area burned (Fig. 6). For example, under no

treatment HadGEM2-CC and HadGEM2-ES scenar-

ios, fire risk peaked near or after the middle of the

twenty-first century and subsequently declined.

Although defensible space treatments maintained

consistently low flame lengths in the home ignition

zone (Fig. 6a–c), treating large amounts of the land-

scape could only dampen, but not eliminate, fire risk at

safe suppression zone and landscape scales (Fig. 6d–

i). Similarly to total and high intensity area burned, fire

risk was dominated by discrete events. In addition to

dampening mean fire risk, treatment could also

decrease maximum fire risk during large fire years

(Table B1). For example, under HadGEM2-CC the

maximum percentage of houses exposed to high

intensity fire in a single year declined from 51.12%

(no treatment) to 16.20% when half of the landscape

was treated and houses were clustered.

Effect of housing amount and configuration

scenarios on fire risk (question 2)

Home ignition zone

Flame length in the home ignition zone did not differ

with housing amount or configuration scenarios

(Table 3) but was reduced by more than 70% relative

to no treatment (Fig. 7, Table B1). For example,

defensible space treatments reduced flame lengths

from 2.05 � 0.10 m (no treatment) to � 0.55 �
0.00 m (all treatment scenarios) under warm-dry

HadGEM2-CC (Fig. 8a). With no fuels treatments,

mean flame lengths were close to or exceeded the

threshold for high intensity fire of � 2.4 m under all

GCMs.

Safe suppression zone

Housing amount and configuration both influenced fire

risk in the safe suppression zone, and clustered

housing was much more effective than dispersed

housing at reducing fire risk (Table 3). For example,

under HadGEM2-CC clustered housing with defensi-

ble space treatments on 10% of the landscape reduced

the average annual percentage of houses exposed to

high intensity fire at this scale from 0.78 � 0.04%

year-1 to 0.40� 0.02% year-1 (a 48% reduction in fire

risk; Fig. 8b). Across all GCMs, clustered housing on

10%, 30%, and 50% of the landscape decreased fire

risk by 53� 5%, 63� 5%, and 76� 5%, respectively

(Fig. 7). In contrast, dispersed housing scenarios

reduced fire risk by\ 25% even when half the

landscape was treated, and most dispersed treatment

scenarios resulted in minimal reductions or increases

in fire risk relative to no treatment (Table B1).

Landscape scale

At the landscape scale, housing amount affected fire

risk, but configuration did not (Tables 3, B2). Across all

GCMs, treating 10%, 30%, and 50% of the landscape

reduced largest high intensity patch size by 10–18%,

41%, and 66–70%, respectively (Fig. 7). However,
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treating 10% of the landscape did not always decrease

the maximum fire risk experienced during the twenty-

first century (Table B1). For example, maximum largest

high intensity patch size increased in four out of six

scenarios when only 10% of the landscape was treated,

whereas treating 30% of the landscape consistently

reduced maximum landscape fire risk. The effect of

housing amount and configuration on fire risk at

landscape scales was generally consistent among

landscape metrics and GCMs.

Random effects

For all linear mixed effects models of fire risk metrics,

the random effect of GCM was significant and

increased variance explained (Table 3).

Discussion

Our results suggest that the most effective strategy for

reducing fire risk depends on the scale at which risk is

assessed. The spatial configuration of houses with

defensible space treatments was particularly important

at neighborhood safe suppression zone scales, while

the amount of area treated was most important at

landscape scales; however, neither was important at

home ignition zone scales. Structures can be ignited in

different ways, even if they are not exposed to high

intensity fire in the home ignition zone (Fig. 1).

Accounting for fire risk at neighborhood and land-

scape scales is critical because direct or indirect

firebrand ignitions can be responsible for the majority

of structure loss (Mell et al. 2010; Maranghides et al.

Fig. 5 Surface fuel biomass in 50% clustered housing with

defensible space treatment scenarios under all three GCMs. a–
c Seedling and sapling (live woody) biomass, d–f forest floor
biomass (1-h and 10-h fuels), and g–i downed woody biomass

(100-h and 1000-h fuels). Solid lines are mean values and

ribbons show a 95% confidence interval. Average values are

shown for untreated (teal) and treated (brown) forest
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2013). Our results can help guide WUI development

planning and the spatial targeting of fuels manage-

ment. At a minimum, clustering development and

treating defensible space on between 10 and 30% of

the landscape every 10 years can meaningfully reduce

fire risk across multiple scales. In current WUI

communities where\ 30% of the area is developed

and homes are not clustered, treating defensible space

only may be insufficient to reduce risk. Homeowners

in these communities should consider treating more

than the immediate 1-ha area around their homes,

which may require collaboration with neighboring

Fig. 6 Fire risk over time at three scales: a–c Home ignition

zone, quantified as average flame length (m) in HIZ areas that

burned, d–f safe suppression zone, quantified as the percentage

of houses exposed to high intensity fire in the SSZ, and g–
i landscape scale, quantified as the largest high intensity patch

index (LPI, ha). Fire risk is compared among no treatment

(green, solid lines) and clustered treatment (shades of purple,

dotted and dashed lines) scenarios (n = 20 replicates per

scenario). Lines are a loess smooth local regression with span

of 100 years and ribbons give a 95% confidence interval
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public and private landowners. In addition, we found

that fire risk in wildland urban interface landscapes

changed over time due to feedbacks among climate,

recurring large fires, and changing fuel characteristics.

Coupling fire behavior assessments with a process-

based and spatially explicit forest simulation model

allowed us to paint a more comprehensive picture of

changing fire risk and fuels treatment effectiveness in

WUI landscapes over the course of the twenty-first

century.

Feedbacks among climate, fire, and fuels dictate

trends in fire risk over time

Area burned increased over time as climate warmed,

especially when projected climate was punctuated by

extreme droughts (i.e., HadGEM2-CC and Had-

GEM2-ES). However, although high intensity area

burned initially tracked increases in total area burned,

these trends decoupled in warm-dry scenarios as fuel

loads decreased, and the landscape supported little to

no high intensity fire by the end of the century. When

fuels could recover sufficiently between fires (e.g.,

canopy fuels in CanESM2), forest fires continued to

burn forests at high intensities. These diverging trends

are consistent with expectations that increasing fire

frequency can decrease fire intensity in forest ecosys-

tems (Ager et al. 2017) and that feedbacks between fire

and vegetation may trigger shifts in long-term fire

regimes with climate warming (Prichard et al. 2017).

Fire risk at safe suppression zone and landscape scales

mirrored trajectories of high intensity area burned. In

general, these findings support our hypothesis that

warmer and drier future climate would increase fire

risk, but that negative feedbacks from fuels consumed

by fire could eventually mitigate increases in risk.

Differences among general circulation models

resulted in qualitatively different trends in forest

extent, fuels, fire behavior, and fire risk throughout the

twenty-first century. Despite similar increases in

temperature, higher amounts of precipitation in

warm-wet CanESM2 led to fewer extremely dry,

large fire years relative to the warm-dry climate

projections. However, climate models may differ only

in the timing of important milestones such as forest

loss and peak fire risk. For example, even though

Fig. 7 Difference in mean

annual fire risk (%) under

defensible space treatment

scenarios varying in amount

(columns) and configuration

(rows), relative to no

management. Differences

are calculated across all

three GCMs (n = 60

observations per each

amount 9 configuration

scenario). Effect of amount

and configuration on fire risk

is quantified at three spatial

scales: Home ignition zone

(yellow), safe suppression

zone (orange), and

landscape based on largest

high intensity patch size

(red). Error bars show �
95% approximate

confidence interval using

Welch’s formula for

unequal variances
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forest extent is largely maintained throughout the

century under CanESM2, declining canopy and forest

floor fuel loads would likely result in declining

forested area if the simulation continued beyond

2099. Making long-term climate projections at

regional scales is a complex process, and one GCM

is not necessarily more likely than another (Taylor

et al. 2012). To anticipate forest change and fire risk at

management-relevant scales, climate projections

should be continually assessed and refined with

improved understanding of global and regional cli-

mate drivers.

Effect of housing amount and configuration

depends on the scale at which fire risk is assessed

Defensible space fuels treatments consistently reduced

fire risk in the home ignition zone, but contrary to our

hypothesis, some treatment scenarios did not reduce

fire risk at broader scales. In addition to dampening

mean fire risk, some scenarios substantially decreased

maximum annual fire risk, indicating that fuels

reductions were particularly important for mitigating

risk during extreme fire years. We only simulated one

level of treatment intensity in our study, aggressive

defensible space treatment around all houses based on

Fig. 8 Fire risk over the duration of the simulation under

HadGEM2-CC at three spatial scales: a Home ignition zone,

quantified as average flame length (m) in HIZ areas that burned,

b safe suppression zone, quantified as the average annual

percentage of houses exposed to high intensity fire in the SSZ (%

year-1), and c landscape scale, quantified as the average annual
largest high intensity patch index (ha year-1). Fire risk is

compared across all treatment scenarios (n = 20 replicates per

scenario), including no treatment (green), dispersed housing

(shades of blue, with darker shades corresponding to increasing

amount of the landscape treated), and clustered housing (shades

of purple, darker shades for increasing amount). Error bars show

� 95% confidence interval
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NFPA standards and repeated every 10 years. This is

currently unrealistic for most WUI communities, in

which local policies and organizations, social norms,

practical skills, and financial resources all affect

private property owner fuels treatment decisions and

capabilities (Stidham et al. 2014; Abrams et al. 2015;

Carroll and Paveglio 2016). Therefore, our results

represent a ‘‘best-case’’ scenario for the potential

benefits of defensible space fuels treatments. How-

ever, if fuel treatments are regularly applied in the

same area, subsequent treatments will likely be less

labor intensive and less costly.

Increasing treatment amount generally decreased

fire risk at safe suppression zone and landscape scales.

The importance of treatment amount was most evident

at landscape scales, where treating between 10 and

30% of the landscape every 10 years was necessary to

reduce maximum fire risk and treating 30% reduced

mean risk by[ 25% for all GCM and landscape

metric combinations. Our findings are consistent with

previous studies that assessed fire behavior at land-

scape scales and found optimal reductions in spread

rates and burn probabilities when 20% of the land-

scape was treated per decade (Finney et al. 2007; Ager

et al. 2010b). In contrast to our results, these studies

also found diminishing returns at higher treatment

amounts, although neither incorporated long-term

changes in climate and fire return interval. When

more of the landscape is treated, there are also trade-

offs between reducing fire risk and maintaining

desired forest conditions or ecosystem services such

as carbon storage, timber production, and wildlife

habitat (Ager et al. 2010a, b; Spies et al. 2017).

As expected, clustered housing with defensible

space treatments was much more effective at reducing

fire risk in the safe suppression zone than dispersed

housing. We also hypothesized that clustered relative

to dispersed configurations would increase fire risk at

landscape scales, but this was not the case. We

modeled our clustered configurations after conserva-

tion development subdivisions, which prioritize main-

taining large, contiguous undeveloped areas for

multiple benefits such as biodiversity, flood control,

and scenic beauty (Pejchar et al. 2007). Our findings

suggest that, assuming homeowners implement defen-

sible space treatments, adhering to conservation

development principles facilitates neighborhood-scale

reductions in fire risk relative to randomly dispersed

sprawl. When treatments and houses were randomly

dispersed, between 30 and 50% of the landscape had to

be treated every 10 years in order to consistently

reduce SSZ fire risk. This brackets the critical

percolation threshold for random maps (pcrit = 41%,

8-neighbor rule; Plotnick and Gardner 1993; Turner

and Gardner 2015), at which point all houses will have

at least one neighbor implementing defensible space

treatments. Clustering may have additional fire pro-

tection benefits relative to dispersed housing, such as

more efficient access for firefighting crews (Syphard

et al. 2012).

Assumptions and limitations

We aimed to understand the roles of changing climate,

fire, and spatial pattern of treatments in affecting fire

risk in WUI landscapes, and we made some simpli-

fying assumptions to isolate the importance of these

driving factors. We assumed that underlying environ-

mental and climate conditions were spatially homo-

geneous, that topography was flat and wind speed was

constant during a fire event, that aggressive defensible

space treatments were perfectly implemented, that

only one structure was present in a 1-ha grid cell, that

all structures were rebuilt after fire, and that all

structures were equally susceptible to high intensity

fire. In real WUI landscapes, individual structures

differ in their vulnerability to direct flame contact,

radiant heat, and firebrands due to differences in

construction materials and building components

(Hakes et al. 2017). In addition, our study focused

on long-term trends in climate-driven fire risk, rather

than near-term seasonal and daily changes in fire

weather and behavior.

An important limitation of our study is that we only

considered forest fuel loads, excluding grasses and

shrubs. However, by counting saplings and seedlings

as live woody surface fuels, we derived estimates for

surface fuel loads comparable to a shrub layer.

Landscaping, vehicles, infrastructure, fuel tanks, and

other structures also contribute to fire spread, fire

intensity, and firebrand production in the WUI (Mur-

phy et al. 2007; Cohen and Stratton 2008; Suzuki et al.

2012). Wildfires have caused extensive damage in

developed areas with little wildland vegetation, high-

lighting the importance of considering these non-

wildland fuel loads (Kramer et al. 2019). Our results

are therefore most applicable to landscapes in which

wildland vegetation is the dominant fuel, and to this
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end, we designed our housing density and develop-

ment amount scenarios based on the definition of

intermix WUI (USDA and USDI 2001; Radeloff et al.

2005).

Implications

In forested WUI landscapes, fire risk to structures is

expected to increase in the coming decades, and some

exposure to high intensity fire is likely unavoidable

even when defensible space is treated. Even when 50%

of the landscape was treated every 10 years, large fire

years exposed[ 15% of the houses to high intensity

fire in the safe suppression zone, and contiguous high

intensity patch sizes exceeded 850 ha. During these

extreme fire years, wildland fire suppression is also

less effective (Keane et al. 2008; Ingalsbee 2017) and

firefighting resources may already be limited if fire is

widespread at regional and national scales (WFEC

2014). Managing and adapting to a future with more

fire will require multiple approaches, including hard-

ening homes against fire based onWUI building codes

(Hakes et al. 2017, ICC 2017), incorporating fire risk

into planning and regulation of WUI developments

(Spyratos et al. 2007; Bihari et al. 2012; Syphard et al.

2012; Haas et al. 2013; Keeley and Syphard 2019),

developing community wildfire protection plans to

coordinate efforts in multi-jurisdictional landscapes

(WFEC 2014; Rasker and Barrett 2016), and accepting

an inevitable level of risk in fire-prone forests where

fire activity is expected to increase (Moritz et al. 2014;

Schoennagel et al. 2017). Although previous studies

have found that local, neighborhood, and landscape

scale factors predict building loss due to wildfire

(Syphard et al. 2014; Alexandre et al. 2016), WUI fire

risk assessments often characterize risk to structures

only based on local scale burn probability and fire

intensity. Our study offers a template for assessing fire

risk to structures at multiple scales to better incorpo-

rate different mechanisms of structure ignition due to

wildfire.
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Bugmann H, González-Olabarria JR, Lasch P, Meredieu C,

Moreira F, Schelhaas MJ, Mohren F (2011) Modelling

natural disturbances in forest ecosystems: a review. Ecol

Modell 222:903–924

Seidl R, Rammer W, Scheller RM, Spies TA (2012) An indi-

vidual-based process model to simulate landscape-scale

forest ecosystem dynamics. Ecol Modell 231:87–100

Seidl R, Rammer W, Spies TA (2014) Disturbance legacies

increase the resilience of forest ecosystem structure,

composition, and functioning. Ecol Appl 24:2063–2077

Spies TA, White E, Ager A, Kline JD, Bolte JP, Platt EK, Olsen

KA, Pabst RJ, Barros AMG, Bailey JD, Charnley S, Koch

J, Steen-Adams MM, Singleton PH, Sulzman J, Schwartz

123

Landscape Ecol (2021) 36:309–330 329

http://iland.boku.ac.at


C, Csuti B (2017) Using an agent-based model to examine

forest management outcomes in a fire-prone landscape in

Oregon, USA. Ecol Soc 22:25

Spyratos V, Bourgeron PS, Ghil M (2007) Development at the

wildland-urban interface and the mitigation of forest-fire

risk. Proc Natl Acad Sci USA 104:14272–14276

Steelman T (2016) U.S. wildfire governance as social-ecologi-

cal problem. Ecol Soc 21:3

Stephens SL, Agee JK, Fulé PZ, North MP, Romme WH,
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