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buffering in a forest landscape model and investigated 
effects on simulated forest dynamics and outcomes.
Methods We adapted the individual-based forest 
landscape and disturbance model iLand to use micro-
climate temperature for three processes [decomposi-
tion, bark beetle (Ips typographus L.) development, 
and tree seedling establishment]. We simulated for-
est dynamics with or without microclimate tempera-
ture buffering in a temperate European mountain 
landscape under historical climate and disturbance 
conditions.
Results Temperature buffering effects propa-
gated from local to landscape scales. After 1,000 

Abstract 
Context Forest canopies shape subcanopy envi-
ronments, affecting biodiversity and ecosystem pro-
cesses. Empirical forest microclimate studies are 
often restricted to local scales and short-term effects, 
but forest dynamics unfold at landscape scales and 
over long time periods.
Objectives We developed the first explicit and 
dynamic implementation of microclimate temperature 
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simulation years, average total carbon and cumulative 
net ecosystem productivity were 2% and 21% higher, 
respectively, and tree species composition differed 
in simulations including versus excluding microcli-
mate buffering. When microclimate buffering was 
included, Norway spruce (Picea abies (L.) Karst.) 
increased by 9% and European beech (Fagus sylvatica 
L.) decreased by 12% in mean basal area share. Some 
effects were amplified across scales, such as a mean 
16% decrease in local-scale bark beetle development 
rates resulting in a mean 45% decrease in landscape-
scale bark beetle-caused mortality.
Conclusions Microclimate effects on forests scaled 
nonlinearly from stand to landscape and days to mil-
lennia, underlining the utility of complex simulation 
models for dynamic upscaling in space and time. 
Microclimate temperature buffering can alter forest 
dynamics at landscape scales.

Keywords Climate regulation · Forest landscape 
model development · Microclimate · European Alps · 
Process-based models · Temperate mountain forests

Introduction

Forest canopies shape local environments, creat-
ing microclimatic conditions that affect ecosystem 
structure and processes (Geiger 1950). For exam-
ple, forests modify subcanopy radiation, air and soil 
temperature, precipitation, wind, relative humidity, 
soil moisture, and snowpack duration and distribu-
tion (Chen et al. 1999; Storck et al. 2002). Near-sur-
face climate affects a wide range of forest processes 
and services, including tree seedling establishment, 
understory species composition and cover, wildlife 
habitat and metabolism, decomposition rates, and 
disturbance intensity and effects (Chen et  al. 1999; 
Hoecker et al. 2020; Zellweger et al. 2020; De Frenne 
et al. 2021; Reiner et al. 2021).

A key characteristic of forest microclimates is 
that temperature extremes are reduced below cano-
pies compared to free-air conditions outside for-
ests, leading to a microclimate buffering effect (De 
Frenne et  al. 2021). Temperature buffering is well 
documented globally across multiple forest types, 
on average cooling maximum air temperatures by 
2.7°C and warming minimum air temperatures 
by 1.2°C in temperate forests (De Frenne et  al. 

2019). Among other factors, microclimate buffer-
ing is shaped by topography and canopy structure 
and composition via their effects on local radiation 
regimes, evapotranspiration levels, and air mixing 
(Chen et  al. 1999; De Frenne et  al. 2021). Micro-
climate buffering by forests is expected to become 
increasingly important given ongoing global cli-
mate warming because of its sensitivity to macro-
climate (i.e., free-air climate in open areas) tem-
perature, with greater canopy-mediated cooling at 
higher maximum temperatures (De Frenne et  al. 
2019; Thom et al. 2020; De Lombaerde et al. 2022). 
As a result, microclimate warming may lag behind 
macroclimate warming, with implications for future 
forest biodiversity, species microrefugia and distri-
butional range shifts, and carbon mitigation poten-
tial (Lenoir et al. 2017; Zellweger et al. 2020; Pas-
tore et al. 2022; Sanczuk et al. 2023).

Forest dynamics play out at landscape scales (i.e., 
 103 to  105 ha) over long time periods, but empirical 
studies on how microclimate temperature affects for-
est processes are often restricted to local scales of 
observation (i.e., typically  10-4 to  100 ha) and short-
term effects. Consequently, there is an inherent scale 
mismatch of five to six orders of magnitude between 
the scale of observation and that of ecological inter-
est. Inferring landscape-scale changes from static, 
plot-scale measurements is challenging, because 
nonlinear scaling relationships and cross-scale inter-
actions can amplify or dampen effects (Wiens 1989; 
Peters et  al. 2007). Furthermore, forest canopies 
can be highly diverse across landscapes, resulting 
in substantial heterogeneity in forest microclimate 
(Vanwalleghem and Meentemeyer 2009; Vandewiele 
et  al. 2023). Some processes, such as disturbance 
and recovery, require explicit consideration of spa-
tial patterns (Turner 2010), and disturbances in turn 
can alter microclimate temperature buffering (Thom 
et al. 2020; Wolf et al. 2021). Management decisions 
must also consider landscape scales to explore trade-
offs among ecosystem services (e.g., Díaz-Yáñez 
et al. 2021), account for spatial context when altering 
species composition and structure (e.g., Mina et  al. 
2022), and mitigate climate or disturbance impacts on 
local communities (e.g., Jenerette et al. 2022). Under-
standing whether and how microclimate buffering at 
local scales contributes to long-term, broad-scale for-
est landscape change is therefore critically important 
for anticipating and managing future forests.
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Forest landscape models are ideally suited for 
addressing this knowledge gap because they simu-
late landscape patterns as emergent outcomes of eco-
logical processes and interactions occurring at finer 
spatial grains (DeAngelis and Yurek 2017). Process-
based models enable projections of future forest 
change under no-analog conditions (Gustafson 2013), 
and improving climate driver representation will 
make projections more robust. Explicitly account-
ing for fine-scale microclimate temperature buffer-
ing effects could alter landscape scale outcomes, for 
example by modifying tree regeneration (Dobrowski 
et  al. 2015), leading to longer term shifts in species 
dominance. Yet, to date microclimate temperature 
has not been explicitly considered in forest landscape 
models.

Here we developed a dynamic and computation-
ally efficient microclimate module that incorporates 
microclimate temperature buffering in the individual-
based forest landscape and disturbance model iLand 
(Seidl et al. 2012a; Rammer et al. 2024). We included 
microclimate temperature effects on three key forest 
processes that occur in the understory or near the for-
est floor, are dependent on temperature, and are simu-
lated explicitly in the current version of iLand. These 
processes included decomposition of deadwood, lit-
ter, and soil organic matter pools; bark beetle devel-
opment; and tree seedling establishment (i.e., suc-
cessful first-year germination and survival).

We then used this novel microclimate module 
to ask, How does accounting for microclimate tem-
perature buffering affect forest processes from local 
to landscape scales? We investigated this question in 
an illustrative temperate mountain forest landscape 
covering a broad elevational gradient (Berchtesgaden 
National Park, Germany). Specifically, we simulated 
forest and disturbance dynamics under historical 
climate for 1,000 years, using either daily macrocli-
mate or microclimate temperature as the driver of the 
three focal subcanopy processes. We then analyzed 
hypothesized effects on indicators of forest dynam-
ics at three spatial scales (local, meso, and land-
scape; Table 1). At the local scale (1 ha), we expected 
cooler microclimate temperatures under dense forest 
canopies to decrease decomposition (H1a) and bark 
beetle development rates (H1b) but maintain similar 
tree regeneration densities (H1c) because increases in 
cold-preferring species can offset decreases in warm-
preferring species. At mesoscales (1-100s of ha), we 

expected microclimate simulations to enhance effects 
of disturbance mortality and associated reductions 
in canopy density on forest processes (H2a-c). Dis-
turbances increase light availability in both micro-
climate and macroclimate simulations but addition-
ally reduce temperature buffering in microclimate 
simulations only. We further expected microclimate 
effects to vary across the elevation ranges of tree spe-
cies, with the greatest differences at lower or upper 
range edges relative to median elevations (H3). At the 
landscape scale (8,645 ha), we expected increased net 
ecosystem productivity (NEP; H4a) and total carbon 
(C) storage (H4b) in microclimate versus macrocli-
mate simulations due to decreased decomposition and 
reduced bark beetle outbreaks (H4c) resulting from 
slowed beetle development. However, we expected 
similar forest composition (H4d) because temperature 
filters are likely less important for determining spe-
cies occurrence compared to light and seed availabil-
ity (Table 1).

Materials and methods

Study area

Berchtesgaden National Park is a 20,808 ha topo-
graphically complex, temperate landscape (44% of 
which is forested) ranging from 603-2,713 m in eleva-
tion in the northern front range of the European Alps 
(Figure 1). The climate is cool and wet, mean annual 
temperature decreases (from 7 to -2  °C) and annual 
precipitation increases (from 1500 to 2800 mm) with 
elevation, and precipitation is highest during sum-
mer. Lower elevation, submontane to montane for-
ests are dominated by European beech (Fagus syl-
vatica L.); mixed stands of Norway spruce (Picea 
abies (L.) Karst.), silver fir (Abies alba Mill.), and 
beech; or relatively homogeneous and widespread 
stands of Norway spruce due to historical legacies 
of timber harvest and replanting. Higher elevation, 
subalpine forests transition from spruce-dominated 
to European larch (Larix decidua L.), Swiss stone 
pine (Pinus cembra L.), and shrubby patches of 
dwarf mountain pine (Pinus mugo Turra) near the 
upper treeline (~1,750  m). Dominant forest distur-
bance agents include European spruce bark beetles 
(Ips typographus L.) and wind, although patch sizes 
and annual area disturbed tend to be small relative to 
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total forested area (< 1 ha median patch size and < 
0.3% annual area disturbed between 1986 and 2020; 
Senf et  al. 2017; Maroschek et  al. 2023). Following 
its establishment in 1978, management ceased in a 
core zone covering 75% of the park. In the remainder, 
management activities are restricted to ungulate man-
agement, bark beetle mitigation, forest restoration, 
and cattle grazing in non-forested areas.

Simulation model

The process-based model iLand simulates forest 
development and landscape change as an emergent 
outcome of species-specific, individual tree responses 

to abiotic drivers, disturbances, management, and 
competition for light (Seidl et  al. 2012a; Seidl and 
Rammer 2024; Rammer et al. 2024). Forest processes 
such as productivity and biomass allocation, intrinsic 
and disturbance-related mortality, seed production 
and dispersal, and tree establishment are modeled 
from basic ecological principles (sensu Gustafson 
2013). Seedlings and saplings are simulated as regen-
eration cohorts until reaching 4 m in height, when 
they are recruited as individual trees. Tree crowns 
shade their neighbors and the subcanopy environ-
ment, modifying microclimate light availability (2 
m horizontal resolution), but until this study micro-
climate temperature buffering effects had not yet 

Table 1  Spatial and temporal scales used to analyze effects 
of microclimate temperature buffering, analysis description, 
forest process and associated indicator, and hypotheses for 

whether microclimate simulations (“Micro”) would have lower 
(<), higher (>), or similar (~) values compared to macrocli-
mate (“Macro”) simulations

Spatial scale Temporal 
scale (yrs)

Description Process Indicator Expected effect on 
process

Local
(1 ha)

30 Annual average within 
dense forested stands 
(overstory LAI > 4)

Decomposition Heterotrophic respiration Micro < Macro (H1a)
Bark beetle development Completed beetle gen-

erations
Micro < Macro (H1b)

Tree establishment Tree regeneration 
density (stems < 4m 
height)

Micro ~ Macro (H1c)

Meso
(1-10s of ha)

15 Average post- minus pre-
disturbance indicator 
values in disturbance 
patches (5-15 years 
since disturbance). 
Patches represent 10 
years of cumulative 
wind and bark beetle 
disturbances.

Decomposition Heterotrophic respiration Micro > Macro (H2a)
Bark beetle development Completed beetle gen-

erations
Micro > Macro (H2b)

Tree establishment Tree regeneration 
density

Micro > Macro (H2c)

Meso
(100s of ha)

30 Relative difference in 
regeneration along 
species-specific eleva-
tion ranges [100 m 
bands centered on the 
lower bound, median, 
and upper bound of its 
elevational regenera-
tion distribution]

Tree establishment Tree regeneration den-
sity for six species

|Difference| at lower or 
upper bound > |Dif-
ference| at median of 
elevational regenera-
tion distribution (H3)

Landscape
(8645 ha)

1000 Average across entire 
forested landscape 
(cumulative or aver-
aged over last 30 years)

Decomposition Net Ecosystem Produc-
tivity

Micro > Macro (H4a)

Decomposition Total carbon Micro > Macro (H4b)
Bark beetle development Bark beetle disturbance 

mortality
Micro < Macro (H4c)

Tree establishment Tree species composi-
tion (basal area share 
for trees > 4m height)

Micro ~ Macro (H4d)
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been incorporated. Carbon is tracked in live, dead, 
and soil pools, with photosynthesis, respiration, dis-
turbance, management, and decomposition affecting 
fluxes among pools and to the atmosphere. Spatially 
explicit disturbance modules include abiotic distur-
bances such as wind (Seidl et  al. 2014) and biotic 
disturbances such as bark beetles (Seidl and Ram-
mer 2017). Bark beetle disturbances consider the life 
cycle of the beetle, climate-driven outbreak initiation 
and interactions with windthrow, spatially explicit 
spread, species identity and size of potential host 
trees, and stress-related susceptibility to colonization. 
Detailed model documentation is available at https:// 
iland- model. org (Seidl and Rammer 2024).

Empirical temperature offset models

We fit linear mixed effects models (LMMs) predict-
ing microclimate temperature offset (°C) using data 
from 497 widely distributed field plots in European 
coniferous and broadleaved forests from three stud-
ies (Zellweger et  al. 2019; Meeussen et  al. 2021; 

Díaz-Calafat et al. 2023; Figure 1; Table S1). In each 
field plot, daily minimum and maximum microcli-
mate temperature were measured at ~1m height for 
one to two years between 2017 and 2021, and mac-
roclimate temperature was either acquired from a 
nearby weather station or measured in nearby open 
areas with no canopy cover (generally a nearby grass-
land site). Microclimate temperature offsets were 
calculated as microclimate minus macroclimate tem-
perature (Equations S1-S2), meaning negative values 
represent cooler forest understory temperatures. Tem-
perature data were previously reviewed and cleaned 
in each study, and we performed additional quality 
checks to identify snow days (i.e., when the micro-
climate sensor was covered in snow), erroneous time 
periods, and extreme outliers. To further reduce out-
lier effects and improve data normality while main-
taining seasonal variation, we calculated the monthly 
average of daily minimum and maximum tempera-
ture offsets (hereafter, “average daily”). Separate 
LMMs were then fit to predict average daily mini-
mum and maximum temperature offsets (n = 7,755 

Fig. 1  (a) Location of plots (n = 497, circles) across Europe 
from three studies where in situ microclimate data were col-
lected in coniferous and broadleaved forests. Data were used 
here to fit empirical temperature offset models. The location 
of Berchtesgaden National Park is indicated by a star. (b) Den-
sity plots showing the distribution of predictor variables (see 
Table  2 for descriptions) across the three studies. (c) Forest 

simulation landscape, which includes all forested areas in Ber-
chtesgaden National Park in Germany, and contemporary for-
est types. Map credits © Natural Earth, OpenMapTiles, Open-
StreetMap, QGIS, Stadia Maps, Stamen Design. Beech: Fagus 
sylvatica, Spruce: Picea abies, Fir: Abies alba, Larch: Larix 
decidua, Swiss stone pine: Pinus cembra, Dwarf mountain 
pine: Pinus mugo 

https://iland-model.org
https://iland-model.org
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observations). Predictors included macroclimate tem-
perature, topography [northness, topographic posi-
tion index (TPI)], and forest structure and composi-
tion [overstory leaf area index (LAI), overstory shade 
tolerance as a proxy for species composition and dif-
ferences in canopy architecture] as fixed effects and 
study (n = 3) as a random intercept effect to account 
for methodological or other differences among studies 
not captured by the fixed effects (Figure 1b, Table 2, 
Table  S1). Predictors, including study, were not 
highly correlated (all squared scaled generalized vari-
ance inflation factors < 1.6; Fox 2016; see Supporting 
Information for additional detail).

Microclimate module and effects on forest processes

We predicted average daily minimum and maximum 
microclimate temperature offset in iLand at 10m spa-
tial resolution using the empirically derived tempera-
ture offset models and dynamically derived predictor 
variables from iLand (Table 2). Predictors were trun-
cated to the maximum and minimum values used in 
model fitting to avoid extrapolating beyond the range 
of values used to train the models. We averaged mini-
mum and maximum offset to derive average daily 
mean microclimate temperature offset. Temperature 

offsets were updated monthly for each 10m cell but 
were added to daily macroclimate temperature to 
match the time step of iLand, meaning microclimate 
temperature varied daily in the simulation model.

To evaluate simulated microclimate buffering in 
iLand, we compared seasonal variability, differences 
among forest types, and spatial patterns of tempera-
ture offsets with ecological expectations and with an 
independent, wall-to-wall microclimate dataset. This 
dataset consisted of Berchtesgaden summer tempera-
ture offset maps derived by combining in situ micro-
climate and macroclimate observations from 2021 
with LiDAR-derived metrics of forest structure and 
topography (Vandewiele et  al. 2023). Because daily 
downscaled (100  m) historical macroclimate data 
used in iLand were only available for 1980–2009 
(Thom et al. 2022), evaluation simulations used con-
temporary forest and topographic conditions with 
macroclimate from a year representing average his-
torical mean annual temperature for the landscape 
(5.7 °C, in 1988).

We simulated effects of microclimate temperature 
buffering on three temperature-dependent processes 
that occur in the forest understory: decomposition, 
bark beetle development, and tree establishment. 
These processes were already implemented and tested 

Table 2  Variables used in average daily microclimate temperature offset models

Variable Short name Units Description

Fixed effects
 Average daily minimum macroclimate tempera-

ture
Tminmacroclimate °C Monthly average of daily minimum free-air tem-

perature; only used in predicting minimum offset
 Average daily maximum macroclimate tempera-

ture
Tmaxmacroclimate °C Monthly average of daily maximum free-air temper-

ature; only used in predicting maximum offset
 Northness Northness dim[-1,1] Cosine of topographic aspect
 Topographic position index TPI m Relative topographic position calculated as plot 

elevation minus mean elevation within a 500m 
radius

 Leaf area index LAI m2  m-2 Projected leaf area per unit area (one-sided), calcu-
lated as the sum of foliage biomass times specific 
leaf area across all individual trees. Updated 
annually in iLand.

 Shade tolerance STol dim[1,5] Weighted mean shade tolerance across tree species, 
weighted by relative basal area. 1=very light-
demanding, 5=very shade tolerant. Updated 
annually in iLand.

Random intercept effect
 Study Study 3 levels Categorical variable, name of the study associated 

with each microclimate dataset (see Figure 1)
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in previous versions of iLand; in the new microcli-
mate version of the model, affected processes use 
daily microclimate rather than macroclimate tempera-
ture as inputs. Forest processes occurring within or 
near the top of the canopy, such as tree primary pro-
duction, were driven by macroclimate temperature in 
all simulations. Macroclimate temperatures in iLand 
refer to free-air temperature at 2 m height and 100 m 
horizontal resolution, derived from interpolated his-
torical weather station data (Thom et  al. 2022). To 
calculate microclimate temperature in iLand, offsets 
were averaged at 100  m spatial resolution across 
stockable 10m cells (i.e., excluding areas such as 
rocks or water bodies that are unable to become for-
ested), and then added to macroclimate temperature 
(Equations S1-S2).

Decomposition rates of snags, downed wood, litter, 
and soil organic matter are simulated based on first 
order decay kinetics in iLand. The reference decay 
rate is sensitive to a climate modifier that accounts 
for temperature and moisture (Adair et al. 2008; Seidl 
et al. 2012b). This modifier affects both the transition 
rate between carbon pools (e.g., downed wood to soil) 
and the rate of heterotrophic respiration to the atmos-
phere (Kätterer and Andrén 2001). To account for 
temperature buffering effects, the microclimate mod-
ule calculates this modifier from mean microclimate 
instead of macroclimate temperature.

In Central European forests, iLand simulates the 
dynamics of the European spruce bark beetle Ips 
typographus (henceforth “bark beetle” for brev-
ity). Bark beetles can produce multiple generations 
per year, with bark temperature influencing devel-
opment rates and sister brood initiation (Baier et  al. 
2007). In the newly developed microclimate mod-
ule, bark temperature is calculated from maximum 
microclimate instead of maximum macroclimate air 
temperature, and overwintering success is based on 
minimum microclimate rather than minimum macro-
climate temperature (see Seidl and Rammer 2017 for 
the equations representing the respective processes). 
Other climate-sensitive aspects of bark beetle spread 
and outbreak intensity, such as outbreak initiation 
and host tree susceptibility, are driven by macrocli-
mate temperature, summer precipitation, and drought 
stress.

Successful tree establishment in iLand relies on 
passing multiple, species-specific abiotic filters. 
These filters include minimum winter temperature, 

winter chilling requirements, and growing degree 
days, which act as thresholds either allowing or pre-
venting establishment (Nitschke and Innes 2008). 
Other abiotic conditions, including soil water avail-
ability and growing season frost events, also modify 
establishment probabilities if thresholds are met 
(see Seidl et  al. 2012b and Hansen et  al. 2018 for a 
detailed description). In the newly developed micro-
climate module, abiotic filters are calculated from 
daily minimum (minimum winter temperature, grow-
ing season frost) or mean (winter chilling require-
ments, growing degree days) microclimate rather than 
macroclimate temperature.

Initial conditions and simulation experiment

Contemporary forest conditions (year 2020); his-
torical climate, soils, and topography; wind and bark 
beetle disturbance regimes; and tree species param-
eters for Berchtesgaden National Park were derived 
and rigorously evaluated by Thom et  al. (2022) and 
have been used in multiple studies (Albrich et  al. 
2022; Dollinger et al. 2023; Braziunas et al. 2024). To 
assess effects of microclimate temperature buffering 
from local to landscape scales, we simulated 1,000 
years of forest development under historical climate 
and disturbances, with no forest management, and 
starting from contemporary forest conditions includ-
ing all major and most minor tree species in Ber-
chtesgaden National Park. Simulations either used 
macroclimate or microclimate temperature as drivers 
of decomposition, bark beetle development, and tree 
establishment processes. We simulated 10 replicates 
of each condition (macroclimate or microclimate) to 
account for variation due to probabilistic processes 
in iLand (Rammer et  al. 2024). To further isolate 
the importance of macroclimate versus microclimate 
temperature as the driver of forest dynamics, each 
replicate followed a randomly selected sequence of 
climate years and wind events drawn from the previ-
ously compiled historical data representing the period 
1980 to 2009 (Thom et al. 2022).

Analyses across scales

We analyzed the effect of microclimate tempera-
ture buffering on indicators of the three focal for-
est processes by comparing simulations driven 
with macroclimate or microclimate at three spatial 
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scales and variable temporal scales (Table  1; see 
Supporting Information for additional detail). At 
local scales, we compared forest process indica-
tors in dense forested stands. At mesoscales, we 
quantified disturbance effects as the post- minus 
pre-disturbance indicator value within distur-
bance patches. Also at mesoscales, differences in 
tree establishment along species-specific elevation 
ranges were assessed for a subset of representative 
species varying in elevational range and tempera-
ture sensitivity: beech and silver fir (submontane-
montane zone, warm preferring), spruce and Swiss 
stone pine (subalpine, cold preferring), and syca-
more maple (Acer pseudoplatanus L.) and larch 
(montane and subalpine, respectively, temperature 
indifferent; Ellenberg and Leuschner 2010). At the 
landscape scale, we compared NEP, carbon stor-
age, disturbance mortality, and tree species com-
position after 1000 years of forest development 
(Table 1). We then compared relative differences in 
landscape-scale indicators between the first and last 
30 simulation years and with local-scale indicators 
to consider how microclimate effects changed over 
time and across scales. Because data were gener-
ated via a simulation experiment, comparisons 
prioritized ecologically meaningful interpretations 
such as relative differences between mean indica-
tor values and variability based on standard errors, 
rather than tests of statistical significance (White 
et al. 2014).

Results

Empirical temperature offset models

In order of predictor importance, buffered (i.e., 
warmer) minimum microclimate temperatures were 
associated with higher TPI, more northerly aspects, 
lower shade tolerance, cooler minimum macroclimate 
temperatures, and higher LAI (Equation S3, Table 3). 
Model fit for average daily minimum temperature 
offset was conditional  R2

c = 0.24 (full model), mar-
ginal  R2

m = 0.07 (fixed effects only), and root-mean-
squared-error (RMSE) = 1.4  °C (Figure S6a). In 
order of predictor importance, buffered (i.e., cooler) 
maximum microclimate temperatures were associated 
with warmer maximum macroclimate temperatures, 
higher LAI, more northerly aspects, lower shade tol-
erance, and lower TPI (Equation S4, Table 4). Model 
fit for average daily maximum temperature offset was 
conditional  R2

c = 0.47, marginal  R2
m = 0.29, and 

RMSE = 2.7  °C (Figure S6b). Models represented 
seasonal variability in microclimate temperature buff-
ering well (Figure S6c-d).

Dynamically simulated temperature offsets in iLand

Daily temperature offsets averaged -0.7 °C for maxi-
mum, 0.1 °C for mean, and 0.8 °C for minimum tem-
peratures across the entire forested landscape during a 
year with average historical climate conditions (mean 
of 864,466 observations at 10  m spatial resolution; 
Figure  2a-c; Table  S2). Relative to maximum and 

Table 3  Linear mixed effects model coefficients and random intercept effect standard deviation for average daily minimum tempera-
ture offset models, fit to n = 7,755 observations

Tminmacroclimate Average daily minimum macroclimate temperature: LAI Leaf area index; STol Shade tolerance; TPI Topographic 
position index

Variable Estimate Standard error (fixed effects) or standard 
deviation (random intercept effect)

t p

Fixed effects
 (Intercept) 1.4570 0.3877 3.7590 0.03
 TPI 0.0158 0.0009 18.1540 < 2.00 ×  10-16

 Northness 0.2627 0.0237 11.0990 < 2.00 ×  10-16

 STol -0.2031 0.0224 -9.0560 < 2.00 ×  10-16

  Tminmacroclimate -0.0248 0.0029 -8.6360 < 2.00 ×  10-16

 LAI 0.0227 0.0127 1.7960 0.07
Random intercept effect
 Study – 0.6614 – –
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mean macroclimate temperatures, forests tended to 
warm microclimate temperatures in the winter (aver-
age offset = 0.8 and 0.9 °C for maximum and mean, 
respectively) and cool microclimate temperatures 
in the summer (-2.2 and -0.8  °C), with spring and 
autumn temperature offsets falling in between these 
extremes. Forests consistently tended to warm mini-
mum microclimate relative to macroclimate tempera-
tures across the full year.

Microclimate temperature buffering differed 
among forest types and across the landscape, and 
simulated mean summer offsets during an average 
historical climate year (1988) aligned with independ-
ent offset maps derived from field data and LiDAR 
collected in 2021 (Spearman’s ρ = 0.47; Figure 
S8). Mean summer microclimate temperatures were 
cooled the most in beech-dominated forests (average 
offset = -1.3  °C), followed by spruce-fir-beech and 
spruce (both -1.0 °C), dwarf mountain pine (-0.4 °C), 
and larch-Swiss stone pine forest types (-0.3 °C; Fig-
ure 2e). Trends were similar for maximum and mini-
mum temperature offsets, except that spruce forests 
cooled maximum temperatures slightly more than 
beech forests (-2.6 versus  -2.5  °C for spruce and 
beech, respectively; Figure 2d) and warmed minimum 
temperatures more than spruce-fir-beech forests (0.6 
versus 0.2 °C for spruce and spruce-fir-beech, respec-
tively; Figure 2f). Lower (i.e., more negative, cooler) 
temperature offsets occurred at lower elevations and 
valley bottoms whereas higher (i.e., more positive, 
warmer) offsets occurred at higher elevations and 
exposed ridges (Figure 2g–i).

Local-scale effects

In dense forested stands, annual heterotrophic respi-
ration was 2% lower (9.25 vs. 9.48 Mg C  ha-1), the 
number of completed bark beetle generations 20% 
lower (1.37 vs. 1.72 generations), and tree regenera-
tion density 3% lower (10,463 vs. 10,820 stems  ha-1) 
in microclimate compared to macroclimate simula-
tions (Figure  3). Regeneration composition shifted 
in dense forested stands, with slightly higher propor-
tions of some subalpine species and slightly lower 
proportions of some submontane to montane species 
in microclimate versus macroclimate simulations 
(Figure S9).

Mesoscale effects

Variability among patches exceeded variability 
between macroclimate and microclimate simula-
tions for post- minus pre-disturbance changes in 
heterotrophic respiration rates and tree regeneration 
densities (Figure S10). However, including micro-
climate temperature buffering more consistently 
enhanced post-disturbance bark beetle development 
(mean change 0.17 versus 0.09 generations  ha-1 and 
increases in 46% versus 32% of patches in micro-
climate versus macroclimate simulations, respec-
tively). Disturbance patch numbers and sizes differed 
between macroclimate (283 patches, 1-59 ha in size) 
and microclimate simulations (165 patches, 1-49 ha).

Microclimate temperature-driven differences 
in tree regeneration varied among representative 

Table 4  Linear mixed effects model coefficients and random intercept effect standard deviation for average daily maximum tempera-
ture offset models, fit to n = 7,755 observations

Tmaxmacroclimate Average daily maximum macroclimate temperature, LAI Leaf area index, STol Shade tolerance, TPI Topographic 
position index

Variable Estimate Standard error (fixed effects) or standard 
deviation (random intercept effect)

t p

Fixed effects
 (Intercept) 0.9767 0.9428 1.0360 0.37
  Tmaxmacroclimate -0.1932 0.0034 -57.3680 < 2.00 ×  10-16

 LAI -0.3948 0.0250 -15.7920 < 2.00 ×  10-16

 Northness -0.5729 0.0466 -12.2910 < 2.00 ×  10-16

 STol 0.4419 0.0442 9.9900 < 2.00 ×  10-16

 TPI 0.0140 0.0017 8.0790 7.51 ×  10-16

Random intercept effect
 Study – 1.6145 – –
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species and along their elevational ranges (Fig-
ure  4). Four of the six species (Swiss stone pine, 
larch, spruce, beech) responded more to microcli-
mate effects at the lower or upper bounds relative 
to median values within their elevation range, and 
most species tended to increase in density at higher 
elevations. Subalpine species usually increased in 
regeneration density (Figure  4a–c), whereas sub-
montane and montane species decreased at lower 
and median elevations (Figure  4d–f). Within these 
elevation zones, temperature-indifferent species 
(larch, sycamore maple) tended to be less sensitive 

than other species to microclimate effects on regen-
eration density.

Landscape-scale effects

After 1,000 years, total carbon and cumulative NEP 
were higher (by 2 and 21%, respectively) and for-
est species composition differed in microclimate ver-
sus macroclimate simulations (Figures  5, S11-S12). 
Increases in total carbon were primarily driven by 
increased soil carbon (7.10 Mg C  ha-1) and partially off-
set by decreased live carbon (-1.64 Mg C  ha-1). When 

Fig. 2  Simulated maximum, mean, and minimum tempera-
ture offsets in Berchtesgaden National Park using the newly 
developed microclimate module in iLand, based on contem-
porary forest conditions and a year with average historical cli-
mate conditions. (a-c) Seasonal and annual temperature offsets 
across all forested cells (864,466 observations per season at 10 
m spatial resolution). (d-f) Summer (June-August) tempera-

ture offsets by forest type. (g-i) Maps of summer temperature 
offsets (values truncated to -3 and 3). Temperature offsets are 
microclimate minus macroclimate temperature. Beech: Fagus 
sylvatica, Spruce: Picea abies, Fir: Abies alba, Larch: Larix 
decidua, Swiss stone pine: Pinus cembra, Dwarf mountain 
pine: Pinus mugo 
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microclimate temperature buffering was included, basal 
area share increased for dominant subalpine species 
(from 7 to 12% for larch and 46 to 55% for spruce) and 
decreased for dominant submontane-montane species 
(from 12 to 9% for silver fir and 34 to 22% for beech). 
Cumulative bark beetle-caused tree mortality was 21% 
lower in microclimate versus macroclimate simula-
tions but windthrows more than compensated for this 
decline, resulting in a 3% increase in total disturbance 
mortality (Figure 5, S11-S12).

Relative differences between microclimate and 
macroclimate simulations tended to be lower in mag-
nitude for landscape versus local-scale indicators of 
decomposition and tree establishment (Figure S13). 
However, relative decreases in bark beetle-caused 
mortality at the landscape scale were of greater mag-
nitude (-45%) than decreases in bark beetle develop-
ment rates at the local scale (-16%). Landscape scale 
differences between microclimate and macroclimate 
simulations increased over time for total carbon and 
species basal area, but not for annual NEP or distur-
bance mortality (Figure S12).

Discussion

We developed the first explicit and dynamic imple-
mentation of microclimate temperature buffering in 

a forest landscape simulation model and found that 
microclimate effects cannot be neglected for simu-
lated forest dynamics. Local effects of buffered sub-
canopy temperatures scaled up nonlinearly, underlin-
ing the utility of using complex simulation models 
for dynamic upscaling in space and time. Spatially, 
microclimate effects at local scales could not simply 
be added up to estimate landscape scale outcomes. 
Temporally, microclimate effects were not static, as 
interacting drivers (e.g., disturbances) and cross-scale 
feedbacks were either amplifying or dampening. By 
explicitly modeling microclimate temperature buff-
ering in a process-based forest landscape model, we 
provide a tool that is well suited for investigating crit-
ical ecological challenges in the 21st century.

Simulated microclimate temperature offsets aligned 
with expectations

Microclimate temperature offset predictions echoed 
ecological expectations, and offset magnitudes were 
within the range of empirical observations in tem-
perate forests (De Frenne et  al. 2019). Responses to 
predictors were consistent with previous studies that 
found higher buffering with increasing canopy density 
(von Arx et al. 2013; Zellweger et al. 2019) and under 
more extreme macroclimate temperatures (De Frenne 
et al. 2019; Thom et al. 2020). Cooler microclimates 

Fig. 3  Local scale indicators of forest processes for simula-
tions without (macroclimate, red) versus with (microclimate, 
yellow) temperature buffering included in the model. (a) 
Heterotrophic respiration as an indicator of decomposition, 
(b) completed bark beetle generations as an indicator of bark 
beetle development, and (c) regeneration density for stems < 

4 m height as an indicator of tree establishment. Values are the 
annual average for dense forested stands (LAI > 4) over the 
first 30 simulation years. Solid points: mean across all repli-
cates, error bars: two standard errors, jittered shaded points: 
mean value for each simulated replicate (n = 10 replicates)
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at lower topographic positions reflected cold air pool-
ing dynamics (Pastore et  al. 2022). Seasonal trends 
aligned with empirical studies, finding enhanced 
cooling of maximum temperatures during summer 
and lower seasonal variability for minimum tempera-
ture buffering (Zellweger et al. 2019; Meeussen et al. 
2021). However, variance explained by fixed effects 
was low, especially for minimum temperature offsets. 
Differences among the three study datasets (e.g., in 
instrumentation, macroclimate data source, and range 
of predictor values) likely contributed to poor model 
performance.

Simulated summer microclimate temperature offsets 
aligned well with independent offset maps derived from 
field data and LiDAR (Vandewiele et  al. 2023). This 
independent dataset was not used to train the model, 
yet the relative ranking of forest types and hotspots of 
highest and lowest buffering capacity were similar for 

maximum and mean offsets. Differences between data-
sets were likely primarily due to different microclimate 
measurement height. Temperatures close to the ground 
(15  cm for independent data) may diverge from 1  m 
height measurements (as simulated in iLand) due to 
dense understory vegetation, differential air mixing, 
and closer proximity to the soil surface where radiant 
heat transfer occurs (Geiger 1950; Campbell and Nor-
man 1998). Overall based on this independent data 
comparison, we conclude that the temperature offsets 
simulated in this study are robust and consistent with 
empirically derived expectations for microclimate tem-
perature buffering.

Fig. 4  Relative difference in regeneration density for six rep-
resentative tree species along their elevation ranges (100  m 
bands centered on the lower bound, median, and upper bound 
of their elevational distribution). Positive values indicate 
increased regeneration when microclimate temperature buffer-
ing is included in the model. Bar height: mean, error bars: two 

standard errors (n = 10 replicates), gray boxes: excluded from 
analysis because they fell below the minimum landscape eleva-
tion. Swiss stone pine: Pinus cembra, Larch: Larix decidua, 
Spruce: Picea abies, Silver fir: Abies alba, Sycamore maple: 
Acer pseudoplatanus, Beech: Fagus sylvatica.
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Microclimate temperature buffering mattered across 
scales

At local scales, decomposition and bark beetle 
development decreased as expected (H1a-H1b; see 
Table 1 for hypotheses) in dense forested stands when 
driven by microclimate rather than macroclimate 

temperature. Counter to our expectations (H1c), tree 
regeneration densities also tended to decrease, sug-
gesting that cooler maximum and mean temperatures 
drove overall responses (e.g., by reducing the likeli-
hood of meeting growing degree day thresholds) 
more than warmer minimum temperatures (e.g., 
by reducing growing season frost events). Shifts in 

Fig. 5  Landscape scale trajectories for (a-b) total carbon and 
carbon pools, (c-d) cumulative disturbance mortality due to 
wind and bark beetles, and (e-f) tree species basal area, with-
out (left) or with (right) microclimate temperature buffering 

effects included in the model. Plots show the mean value from 
10 simulated replicates. Beech: Fagus sylvatica, Spruce: Picea 
abies, Fir: Abies alba, Larch: Larix decidua, Swiss stone pine: 
Pinus cembra, Dwarf mountain pine: Pinus mugo 
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tree regeneration composition imply that some spe-
cies benefit more from microclimate temperature 
buffering than others due to species-specific traits 
(Dobrowski et al. 2015).

At mesoscales, high variability among disturbance 
patches overwhelmed differences between microcli-
mate and macroclimate simulations for all processes 
except bark beetle development (H2a-c). Tempera-
ture is only one factor influencing post-disturbance 
dynamics, and processes may be more sensitive to 
other disturbance-mediated factors such as amount 
and arrangement of dead woody biomass (e.g., het-
erotrophic respiration; Harmon et  al. 2011), light 
availability (e.g., tree seedling survival and growth; 
Xu et al. 2023), and biotic legacies (e.g., seed supply; 
Gill et al. 2022). Furthermore, if disturbance severity 
is low, canopy gaps are small, or residual structures 
remain – as is frequently the case in our study land-
scape – disturbance effects on temperature buffering 
may be less pronounced (Abd Latif and Blackburn 
2010; Carlson et  al. 2021). Microclimate effects on 
tree establishment along elevational ranges generally 
aligned with expectations (H3). Positive effects at 
higher elevations suggest most species benefited from 
being released from minimum temperature and frost 
limitations.

At the landscape scale, total carbon and cumula-
tive NEP increased as expected (H4a-b), but forest 
composition shifted more substantially than expected 
(H4d) when driven by microclimate rather than mac-
roclimate temperature. Compositional changes high-
light the role of intact forest canopies and variable 
topography in creating climatic conditions that favor 
certain species (Dobrowski et  al. 2015). Shifts in 
landscape scale carbon storage and cycling suggest 
cascading effects of microclimate-driven processes on 
the climate regulating function of forests (De Frenne 
et al. 2021; Pastore et al. 2022). In addition to remov-
ing live woody carbon, forest loss could accelerate 
carbon losses from soil and dead pools if decompo-
sition rates increase with warmer free-air tempera-
tures. Bark beetle development rates were dampened 
as expected (H4c) but, perhaps surprisingly, did not 
translate into overall reductions in disturbance mor-
tality because increasing wind disturbances more than 
compensated for declining bark beetle disturbances. 
However, this trade-off is ecologically reasonable; 
the dense, homogeneous stands of large Norway 
spruce that dominate this landscape are susceptible to 

both bark beetle and wind disturbances (Stritih et al. 
2021). Previous studies have found similar compen-
satory disturbance dynamics in forests of Central 
Europe (Dobor et al. 2020).

Limitations and future directions

We only considered microclimate buffering effects 
on temperature in this study. However, forest cano-
pies already influence light availability and water 
cycling in iLand simulations (Seidl et  al. 2012a). 
Some processes, such as decomposition, are there-
fore already influenced by canopy-mediated effects 
on precipitation and potential evapotranspiration 
(Adair et al. 2008). Additionally, other climate-sensi-
tive processes occur underneath forest canopies. For 
example, future model development could explore 
microclimate effects on surface fuel moisture and 
associated dynamics of fire ignition, spread, and 
severity (Rothermel 1983).

Our aim was to identify a generalizable, robust, 
dynamic, and computationally efficient approach for 
representing microclimate temperature effects on for-
est processes and landscape outcomes (i.e., to find the 
Medawar zone of optimal model complexity; Grimm 
et al. 2005). For this reason, we used a simple empiri-
cal equation to predict temperature offsets rather 
than a process-based approach rooted in environ-
mental biophysics (e.g., as in microclimc; Maclean 
and Klinges 2021). We capitalize on the strengths 
of a process-based forest model such as iLand by 
simply substituting microclimate for macroclimate 
temperature for focal processes, allowing effects to 
propagate across spatial scales and over time, and 
annually updating temperature buffering based on 
dynamic changes in forest structure and composition. 
This study is meant to contrast outcomes if realis-
tic microclimate temperature offsets are used as the 
proximal drivers of forest understory processes, not 
to provide an actual projection of change for this for-
est landscape. Our empirical model is calibrated for 
topographically complex, temperate forest landscapes 
in Europe, and users in other regions should test and 
refine models as needed and evaluate whether tree 
species regeneration parameters need to be updated. 
Some influential drivers (e.g., moderating effects of 
local water balance on temperature buffering; von 
Arx et al. 2013; Davis et al. 2019) were less relevant 
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in this landscape but could be considered in future 
model development.

Simulating future forests

Our findings suggest that forest models should explic-
itly consider microclimate temperature to improve 
inferences about the future (De Frenne et  al. 2021). 
Disregarding temperature buffering may lead to over-
estimation of extinction risks due to climate change 
(Lenoir et  al. 2017) and underprediction of lagged 
biodiversity change in subcanopy forest communi-
ties (Zellweger et  al. 2020). Forests may maintain 
favorable temperature conditions for many forest-
dependent species under increasingly extreme climate 
change, potentially giving species more time to move 
to new habitats (i.e., as stepping-stones) or sustaining 
habitats for relatively immobile plant and animal spe-
cies (i.e., as holdouts or microrefugia; Hannah et al. 
2014). Because forest management alters canopy den-
sity and structure, accounting for resulting impacts 
on microclimate temperature can improve our under-
standing of how management affects forest processes 
from local to landscape scales (Chen et  al. 1999; 
Menge et al. 2023). Forests cool microclimates more 
when macroclimate temperatures are hotter, suggest-
ing that microclimate effects will be even more pro-
nounced under future climate change if forest cover 
is maintained (De Lombaerde et  al. 2022). Here, 
we present a new microclimate module for a freely 
available, process-based forest landscape model that 
allows us to explore a wide variety of climate, distur-
bance, and forest management scenarios and quantify 
the implications of temperature buffering on future 
forests and the services they provide.
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Supplementary materials and methods 

Empirical temperature offset models 

Within each forested study site, daily minimum and maximum microclimate 

temperature were recorded at plot centers either with Lascar Easy Log EL-USB-1 at 1 m 

height (Zellweger et al. 2019; Meeussen et al. 2021) or HOBO Pendant MX Water 

Temperature loggers at 1.2 m height (Díaz-Calafat et al. 2023). Prior to model fitting, 

temperature data were reviewed and cleaned to identify and remove snow days, erroneous 

time periods, and extreme outliers. This removed 5% of daily data from further analysis. 

Snow days. We identified days when temperature loggers were covered with snow as 

days where the daily temperature range was < 1°C, the average maximum daily temperature 

was < 1°C in a 9-day moving window, and the average daily temperature range was < 2°C 

within the same 9-day moving window (Aalto et al. 2022; Tyystjärvi et al. 2023). Since 

loggers were at 1-1.2 m height, this only occurred in some winters in plots in Scandinavia. 

Subsequently, all days within a 5-day moving window were classified as snow days if at least 

one day was snow-covered (Tyystjärvi et al. 2023).  

Erroneous time periods. Microclimate loggers were grouped by region to identify 

erroneous time periods. Anomalies were automatically detected by taking the 30-day running 

mean of maximum and minimum temperature for all loggers in a region and then identifying 

measurements that were more than three standard deviations from the mean value (sensu 

Aalto et al. 2022). We then visually evaluated all loggers with anomalies by comparing time 

series with other loggers in the same region and, when applicable, at the same site within a 

region (sensu Meeussen et al. 2021). If loggers exhibited sustained time periods with 
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anomalous values, did not align with other loggers at the same region or site, or did not 

exhibit expected seasonal trends, these time periods were classified as erroneous (e.g., 

potentially a period when the logger was uprooted or damaged) and removed from analyses.  

Extreme outliers. Individual outlier values were removed based on similar criteria. 

Extreme outliers were identified as any values that was greater than three standard deviations 

from the 30-day running mean for each logger and as values that were < -50°C or > 50°C 

(Tyystjärvi et al. 2023). These outliers were also removed from analyses. 

Predictor variables. Predictor variable selection was based on important predictors 

identified in previous studies and a priori expectations based on ecological relationships 

(Table 2 in main manuscript). Other predictors were considered but excluded due to high 

collinearity (e.g., phenology with macroclimate temperature) or duplicative information (e.g., 

elevation with macroclimate temperature, cold air drainage with topographic position index), 

unbalanced representation among the different studies (e.g., proportion deciduous or 

coniferous), lack of variability within the study landscape (e.g., distance to coast does not 

vary meaningfully within Berchtesgaden), and inadequate coverage of values in the study 

landscape (e.g., relatively shallower stopes in microclimate dataset and steeper slopes in 

Berchtesgaden). Final predictors were not strongly correlated (all bivariate Pearson’s r < 0.5) 

and summary statistics by study area are included in Table S1.  
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Table S1. Summary data on microclimate and macroclimate temperature data collection dates 

and mean, standard deviation, and range of dependent and predictor variables used in 

empirical temperature offset models for each of the three studies and for all studies combined. 
Variable Units Díaz-Calafat 

et al. 2023 

mean (sd) 

min-max 

Meeussen et 

al. 2021 

mean (sd) 

min-max 

Zellweger et 

al. 2019 

mean (sd) 

min-max 

All studies 

mean (sd) 

min-max 

Data collection 

Date range  – Jan 2020- 

July 2021 

June 2018- 

May 2020 

Mar 2017- 

Jan 2018 

2017-2021 

Number of observations 

(monthly averages of daily 

values) 

– 2381 4370 1004 7755 

Dependent variables      

Average daily minimum 

microclimate temperature 

offset (Tminoffset) 

°C -0.03 (1.3)  

-2.5-3.4 

 

1.28 (1.59)  

-3.9-8.26 

 

0.89 (1.1)  

-1.97-4.11 

0.83 (1.56)  

-3.9-8.26 

Average daily maximum 

microclimate temperature 

offset (Tmaxoffset) 

°C 0.54 (1.49)  

-2.88-8.78 

 

-5.02 (4.23)  

-18.25-14.23 

 

-0.83 (1.4)  

-4.34-3.98 

-2.77 (4.21)  

-18.25-14.23 

Predictor variables       

Average daily minimum 

macroclimate temperature 

(Tminmacroclimate) 

°C 3.26 (6.23)  

-12.44-15.42 

 

5.09 (5.34)  

-7.5-16.5 

 

6.28 (4.69)  

-5.58-13.88 

4.68 (5.64)  

-12.44-16.5 

Average daily maximum 

macroclimate temperature 

(Tmaxmacroclimate) 

°C 11.48 (7.55)  

-5.37-24.96 

 

22.54 (10.66) 

-0.52-44.93 

14.83 (6.83) 

0.89-28.07 

18.15 (10.65) 

-5.37-44.93 

Northness dim[-1,1] -0.22 (0.69)  

-1-1 

-0.47 (0.67)  

-1-1 

-0.11 (0.73)  

-1-1 

-0.35 (0.7)  

-1-1 

Topographic position index 

(TPI) 

m -0.02 (4.45)  

-8.71-12.33 

-3.33 (24.71) 

-105.43-63.2 

 

4.94 (13.68)  

-15.98-66.8 

-1.24 (19.55) 

-105.43-66.8 

Leaf area index (LAI) m2 m-2 2.65 (1.33) 

0.37-6.33 

2.53 (1.35) 

0.3-7.74 

3.39 (1.54) 

0.52-9.44 

2.67 (1.4) 

0.3-9.44 

Shade tolerance (STol) dim[1,5] 2.53 (0.71) 

1-3.5 

3.07 (0.88) 

1.06-5 

3.68 (0.68)  

2-5 

2.98 (0.88) 

1-5 

 

Daily minimum and maximum macroclimate temperature for each site was recorded 

from either nearby weather stations (Zellweger et al. 2019; Díaz-Calafat et al. 2023) or from 

an identical temperature logger installed nearby in open conditions (Meeussen et al. 2021). 

Macroclimate loggers installed in open conditions were also quality checked, and snow days 

and extreme outliers were identified and excluded as described above. Temperature offset was 
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then calculated as microclimate minus macroclimate temperature for daily minimum and 

maximum values (Equations S1-S2).  

Tminoffset = Tminmicroclimate - Tminmacroclimate  

Tmaxoffset = Tmaxmicroclimate - Tmaxmacroclimate 

(Eq. S1) 

(Eq. S2)

Negative offset values indicate that microclimate temperatures are cooler underneath the 

forest canopy relative to macroclimate temperatures, whereas positive values indicate 

subcanopy temperatures are warmer. Daily temperature offsets were averaged for each month, 

and only months with at least 15 daily observations were included in model fitting. 

Topographic predictors were derived from field plot coordinates and a 25 m resolution 

digital elevation model (EU-DEM 2016). Forest structure and composition predictors were 

calculated from forest inventory data including individual tree species and diameter at breast 

height (DBH) for all trees with DBH > 7.5 cm in a 9 m radius plot centered on the location of 

the microclimate logger. We quantified plot-level variables using previously compiled and 

tested species-specific trait values for foliage biomass allometry, specific leaf area, and shade 

tolerance for Central European tree species simulated in iLand (Seidl et al. 2012; Thom et al. 

2017, 2022). Species not present in this dataset were assigned biomass allometrics from a 

morphologically similar species (based on Falster et al. 2015; Forrester et al. 2017). 

Additional data on shade tolerance was procured from Niinemets & Valladares (2006) via the 

TRY Plant Trait Database (Kattge et al. 2020). 

A random intercept effect for study (n = 3) was included to account for variance due to 

methodological or other differences among studies (e.g., different microclimate temperature 

sensors, macroclimate data sources, measurement height, and data cleaning processes) not 

explained by fixed effects. This assumed that study was independent of the fixed effects. We 

evaluated this assumption by testing for multicollinearity among all predictors using 

generalized variance inflation factors (GVIF), which when rescaled based on degrees of 

freedom are suitable for evaluating correlation strength for categorical predictors with more 
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than two levels (Fox and Monette 1992; Fox 2016). The squared scaled GVIF is identical to 

the variance inflation factor for continuous variables and interpreted using the same ranges of 

values to assess correlation strength. We further evaluated the inclusion of study by 

comparing residual boxplots between models with or without study as a predictor; the 

inclusion of study as a random effect removed directional trends in median residual values, 

although some unequal variance remained (Figure S1). 

 

Figure S1. Boxplots showing trends and variability in residual values among different studies 

for linear models with only fixed effects (study not included as a predictor; left column) and 

for linear mixed effects models when study was included as a random intercept effect (right 

column). Top row: minimum temperature offset model, Bottom row: maximum temperature 

offset model. 

 

Model diagnostics and decision-making. Linear mixed effects model diagnostics based 

on residual and quantile-quantile plots showed slight deviations from assumptions of 
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normality, linearity, and equal variance (Figures S2-S3). We used and considered multiple 

approaches for improving model assumptions, including removing erroneous values and 

outliers (described above), using the monthly average of daily minimum and maximum 

temperatures rather than the daily values, adding more predictors, transforming predictors, 

including or excluding study as a random effect, and fitting separate models for each study. 

Adding new or transforming predictors did not improve assumptions, but using the monthly 

average of daily values and including study as a random effect did improve assumptions (e.g., 

see Figure S1 above). Separate models fit to each study showed that assumption violations 

varied by dependent variable and by study (Figures S4-S5).  

 
Figure S2. Final linear mixed effects model diagnostics, including residuals versus fitted 

values and quantile-quantile plot, for minimum temperature offset. 

 

 
Figure S3. Final linear mixed effects model diagnostics, including residuals versus fitted 

values and quantile-quantile plot, for maximum temperature offset. 
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Figure S4. Linear model diagnostics, including residuals versus fitted values (left column) 

and quantile-quantile plots (right column), for minimum temperature offset models fit to each 

study separately (rows). 
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Figure S5. Linear model diagnostics, including residuals versus fitted values (left column) 

and quantile-quantile plots (right column), for maximum temperature offset models fit to each 

study separately (rows). 

 

We considered model goals and the balance of generality, realism, and precision in 

final model decision-making (Levins 1966). For the purposes of implementing microclimate 

temperature offsets in a process-based forest landscape simulation model, we prioritized 

simplicity, generality, and ecological realism at the expense of additional model precision in 

the fit of the statistical model. Thus, we chose a linear model for simplicity and included all 

data despite assumption violations to improve generality. We further considered ecological 
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realism in model evaluations, such as expectations from the literature and biophysical 

principles for relationships between fixed effects and predicted offsets, seasonal and forest 

type variation in predicted offsets, and comparisons with independent data. Finally, we 

considered and took steps to constrain the potential range of predicted values. Predictions 

tended to be more conservative relative to observations (i.e., overpredicted at low extremes 

and underpredicted at high extremes; Figure S6a-b). We truncated all predictor values to the 

maximum and minimum values used in model fitting to avoid extrapolating beyond the range 

of values used to train the models. 

Final models. Final linear mixed effects models predicting the monthly average of 

daily minimum (R2
c = 0.24, R2

m = 0.07) and maximum (R2
c = 0.47, R2

m = 0.29) temperature 

offsets were fit to n = 7,755 observations in n = 497 plots (Equations S3-S4; Tables 3-4; 

Figure S6). Note that Equations show fixed effects and the average intercept across studies; 

the random effect (study) would be reflected by having a different intercept for each study. 

Tminoffset = 1.4570 - 0.0248 × Tminmacroclimate + 0.2627 × Northness  

+ 0.0158 × TPI + 0.0227 × LAI - 0.2031 × STol 

Tmaxoffset = 0.9767 - 0.1932 × Tmaxmacroclimate - 0.5729 × Northness  

+ 0.0140 × TPI - 0.3948 × LAI + 0.4419 × STol 

(Eq. S3) 

 

(Eq. S4) 
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Figure S6. (a-b) Predicted versus observed average daily minimum (a) and maximum (b) 

microclimate temperature offset from linear mixed effects models fit to monthly averages  

(n = 7,755 observations from three studies). Black line is 1:1 line, blue line is linear fit. (c-d) 

Temporal variability in macroclimate, microclimate, and predicted microclimate for average 

daily minimum (c) and maximum (d) temperature. 



11 

 

Initial conditions for iLand simulations 

Initial forest structure and species composition was mapped from 3,559 regularly 

spaced forest inventory plots and a forest type map. Daily climate (1980-2009) was derived 

from bias corrected dynamic regional climate projections (Warscher et al. 2019) using 35 

local weather stations and statistically downscaled to 100 m resolution accounting for the 

effect of elevation. Historical wind event speed, direction, and day of year were modeled from 

regional meteorological station measurements, and simulated wind and bark beetle 

disturbances aligned well with past observations (Thom et al. 2022). Soil texture and fertility 

were mapped from regional data (Konnert 2004), and topographic variables were derived 

from a digital elevation model (EU-DEM 2016) downscaled from 25 to 10 m resolution using 

bilinear interpolation. 

Analyses across scales 

At local scales, we compared microclimate temperature effects on forest processes in 

dense forested stands, defined as having overstory LAI > 4 m2 m-2 (von Arx et al. 2013). 

Using the first 30 years per simulation replicate, we computed the annual mean value for 

indicators of each of the three focal processes: heterotrophic respiration (Mg C ha-1) as an 

indicator of decomposition, number of completed beetle generations as an indicator of bark 

beetle development rates, and tree regeneration density (total and species-specific stems ha-1 

for stems < 4 m height) as an indicator of tree establishment.  

 At mesoscales, we evaluated disturbance effects on the same decomposition, bark 

beetle, and establishment indicators as the post- minus pre-disturbance mean value for each 

disturbance patch in microclimate and macroclimate simulations. Stands were considered 

disturbed if at least half of the 1-ha area experienced a bark beetle or windthrow event over 

the first 10 simulation years, to account for multi-year bark beetle spread or wind-beetle 

interactions. Patches (minimum size = 1 ha) were then classified using the 8-neighbor rule. 

Pre-disturbance indicators were calculated for simulation year 0 and post-disturbance for year 
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15 (i.e., 5-15 years since disturbance) based on forest recovery rates and the timing of peak 

microclimate temperature buffering in this landscape (Vandewiele et al. 2023).  

Mesoscale differences in tree regeneration were also evaluated for six representative 

species that varied in elevational range and temperature sensitivity. These included beech and 

silver fir [submontane-montane zone, warm-preferring with Ellenberg Indicator Value (EIV) 

for temperature = 5; Ellenberg & Leuschner, 2010], spruce and Swiss stone pine (subalpine, 

cold-preferring with EIV = 3 and 2, respectively), and sycamore maple (Acer pseudoplatanus 

L.) and larch (montane and subalpine, respectively, temperature indifferent). The elevational 

regeneration range for each species was represented with 100 m bands centered on the 

approximate lower bound, median, and upper bound of its elevational regeneration 

distribution in the Bavarian Alps (Ewald 2012). Lower bounds were excluded from analysis if 

they fell below the minimum elevation in the Berchtesgaden landscape (~600 m). Variable 

effects of microclimate along the elevational regeneration range were quantified as the 

relative difference in stem density between microclimate and macroclimate simulations for 

each species and elevation band, averaged across the first 30 simulation years. 

 At the landscape scale, we compared cumulative net ecosystem productivity (NEP), 

total carbon, carbon pools, cumulative disturbance mortality, and tree species composition 

(trees > 4 m height) based on basal area after 1,000 years of forest development with or 

without microclimate temperature buffering. Indicators that were not cumulative (carbon 

pools and species basal area) were averaged over the last 30 simulation years. We also 

compared relative differences in landscape scale indicators between the first and last 30 

simulation years (here, annual rather than cumulative values were used for NEP and 

disturbance) and with the local scale indicators described above to evaluate how microclimate 

effects changed over time and across scales.  
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Sensitivity analysis 

A sensitivity analysis was performed to determine which process most strongly 

contributed to landscape scale change in cumulative NEP, total carbon, and individual carbon 

pools when driven by microclimate rather than macroclimate temperature. To determine 

relative effects, microclimate temperature buffering was turned “on” or “off” for each of the 

three processes (decomposition, bark beetle development, tree establishment), and simulations 

were run for all combinations (n = 10 replicates of each 23 processes = 80 total replicates). For 

each replicate, forest development was simulated for 30 years under historical climate, 

random sequences of wind events, and dynamic bark beetle disturbances starting from 

contemporary forest conditions in Berchtesgaden National Park. Cumulative NEP at year 30 

and average carbon pools were normalized by subtracting the corresponding macroclimate 

replicate (microclimate = “off” for all processes) and dividing by the range of simulation 

means (i.e., the range of all eight process combinations after averaging across the 10 

replicates, so that mean differences will be within +/-1). 

Cumulative NEP, total carbon, and all carbon pools except live C were most sensitive 

to microclimate temperature buffering effects on decomposition (Figure S7). Dampened bark 

beetle development rates due to microclimate buffering resulted in the greatest increases in 

live C and decreases in dead woody C that partially offset gains from reduced decomposition. 
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Figure S7. Sensitivity analysis showing the effect of driving simulations with microclimate 

instead of macroclimate for all combinations of three forest processes on (a) cumulative net 

ecosystem productivity (NEP) and total carbon (C) or (b) different carbon pools. X axis shows 

which processes are driven by microclimate. Points and ranges are derived from n = 10 

replicates of each and show the mean change (point) and two standard errors (range). All 

values have been normalized by subtracting the corresponding macroclimate replicate value 

and dividing by the range of simulation means [i.e., the range of all eight process 

combinations after averaging across the 10 replicates, so that mean differences (points) will 

be within +/-1]. 
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Software 

All statistical analyses were performed and, with the exception of Figure 1, all figures 

were created using R (R Core Team 2024) version 4.3.2. We specifically used the packages 

car (Fox and Weisberg 2019), corrplot (Wei and Simko 2021), cowplot (Wilke 2020), 

ggnewscale (Campitelli 2023), ggpubr (Kassambara 2023), landscapemetrics (Hesselbarth et 

al. 2019), lme4 (Bates et al. 2015), lmerTest (Kuznetsova et al. 2017), lubridate (Grolemund 

and Wickham 2011), ModelMetrics (Hunt 2020), MuMIn (Bartoń 2023), openxlsx 

(Schauberger and Walker 2023), plotrix (Lemon 2006), RSQLite (Müller et al. 2023), sf 

(Pebesma 2018; Pebesma and Bivand 2023), terra (Hijmans 2023), tidyverse (Wickham et al. 

2019), and zoo (Zeileis and Grothendieck 2005). Figure color schemes were derived from 

Color Brewer 2.0 (Brewer and Harrower 2013), khroma (Frerebeau 2023), and Paul Tol’s 

Color Schemes (Tol 2023).  
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Supplementary tables and figures 

Table S2. Summary data on simulated maximum, mean, and minimum temperature offsets; 

macroclimate and microclimate temperature; and temperature offset predictors in 

Berchtesgaden National Park using the newly developed microclimate module in iLand, based 

on contemporary forest conditions and a year with average historical climate conditions. 

Summaries present mean, standard deviation (sd), and range of annual values across the entire 

landscape (n = 864,466 observations at 10 m spatial resolution). 
Variable Units Summary statistics 

mean (sd) 

min-max 

Temperature offsets   

Annual average of daily minimum microclimate 

temperature offset (Tminoffset) 

°C 0.81 (0.82)  

-1.61-2.59 

Annual average of daily mean microclimate 

temperature offset 

°C 0.05 (0.85)  

-2.86-2.41 

Annual average of daily maximum microclimate 

temperature offset (Tmaxoffset) 

°C -0.70 (1.11)  

-5.32-3.60 

Macroclimate temperature   

Annual average of daily minimum macroclimate 

temperature (Tminmacroclimate) 

°C 3.51 (1.51)  

-0.83-6.43 

Annual average of daily mean macroclimate 

temperature (mean annual temperature) 

°C 5.68 (1.60)  

1.24-8.97 

Annual average of daily maximum macroclimate 

temperature (Tmaxmacroclimate) 

°C 7.84 (1.69)  

3.31-11.51 

Microclimate temperature   

Annual average of daily minimum microclimate 

temperature (Tminmicroclimate) 

°C 4.32 (1.41)  

-1.07-8.00 

Annual average of daily mean microclimate 

temperature (mean annual microclimate temperature) 

°C 5.73 (1.32)  

0.87-9.99 

Annual average of daily maximum microclimate 

temperature (Tmaxmicroclimate) 

°C 7.14 (1.41)  

1.73-12.56 

Other predictor variables   

Northness dim[-1,1] 0.27 (0.64)  

-1-1 

Topographic position index (TPI) m -8.95 (47.19)  

-105-67 

Leaf area index (LAI) m2 m-2 2.76 (2.09)  

0.3-9.4 

Shade tolerance (STol) dim[1,5] 2.73 (1.02)  

1-5 
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Figure S8. Comparison between simulated summer mean temperature offsets at ~1 m height  

in Berchtesgaden National Park using the newly developed microclimate module in iLand 

(left column) and temperature offset maps generated for this landscape using independent 

microclimate data measured at 15 cm height and mapped with LiDAR (right column; 

Vandewiele et al., 2023). Simulated offsets were derived at 10 m resolution (n = 864,466 

observations) based on contemporary 2020 forest conditions and a year with average 

historical climate conditions (1988, 5.7 °C mean annual temperature). Independent data were 

mapped at 20 m resolution based on temperature and LiDAR data collected in 2021  

(n = 229,432 observations). Corresponding values from the independent dataset were 

extracted using cell centroid locations from the simulated dataset, and correlation was 

moderately positive (Spearman’s ρ = 0.47; n = 832,130 observations after removing NA 

values). (top row) Violin and boxplots showing summer mean minimum temperature offsets 

by forest type. (bottom row) Maps of summer mean temperature offsets. Mapped values are 

truncated to -3 and 3 to improve comparison and visualization. Temperature offsets are 

defined as microclimate minus macroclimate temperature.   
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Figure S9. Tree regeneration species composition in dense forested stands (overstory  

LAI > 4) in microclimate versus macroclimate simulations. Stacked bars show mean 

proportion of total tree regeneration density for a given species across 10 simulation 

replicates, based on stem counts for stems < 4 m in height. Species are ordered based on 

whether they tend to occur at higher (pimu) to lower (saca) elevations. Species codes: pimu, 

Pinus mugo; pice, Pinus cembra; lade, Larix decidua; soau, Sorbus aucuparia; piab, Picea 

abies; abal, Abies alba; acps, Acer pseudoplatanus; fasy, Fagus sylvatica; soar, Sorbus aria; 

frex, Fraxinus excelsior; saca, Salix caprea. 
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Figure S10. Disturbance effects (post- minus pre-disturbance values for each patch) on forest 

process indicators for microclimate and macroclimate simulations. Disturbance patches were 

delineated based on bark beetle and wind events occurring within the first 10 years of each 

simulation replicate, using the 8-neighbor rule. Pre-disturbance values were from simulation 

year 0, and post-disturbance values from simulation year 15 (5-15 years since disturbance). 

(top row) Violin and boxplots show the distribution of values across all disturbance patches  

(n = 283 for macroclimate, n = 165 for microclimate). (bottom row) Mean values (bars) and 

two standard errors (error bars) across all patches. 
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Figure S11. Landscape scale trajectories over 1,000 simulation years for cumulative net 

ecosystem productivity (NEP), total carbon, cumulative disturbance mortality due to bark 

beetles and wind, and basal area for spruce and beech, with or without microclimate 

temperature buffering effects. Lines are median values and shading shows 5th to 95th 

percentile values across 10 simulation replicates. 
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Figure S12. Change in effects of microclimate temperature buffering over time, evaluated by 

comparing the relative differences in landscape scale indicators at the beginning or end of 

1,000 years of forest development. Annual, rather than cumulative, net ecosystem productivity 

(NEP), bark beetle-caused mortality, and all disturbance mortality were used to ensure 

comparability across different time periods. All indicators were the average of the first and 

last 30 simulation years. Relative values were calculated as 100 x (microclimate – 

macroclimate)/macroclimate. Bar height is the mean value and error bars are two standard 

errors (n = 10 replicates). 
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Figure S13. Change in effects of microclimate temperature buffering across scales, evaluated 

by comparing the relative differences in local and landscape scale indicators, with local scale 

indicators representing the process directly affected by microclimate temperature. All 

indicators were the average of the first 30 simulation years. Note that negative relative 

differences in respiration translate into positive relative differences in carbon (because 

decreased respiration leads to lower carbon losses to the atmosphere). Relative values were 

calculated as 100 x (microclimate – macroclimate)/macroclimate. Bar height is the mean 

value and error bars are two standard errors (n = 10 replicates). 
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